www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 5-7" - Textaufgabe zu ggT und KGV
Textaufgabe zu ggT und KGV < Klassen 5-7 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 5-7"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Textaufgabe zu ggT und KGV: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 18:26 Mo 19.05.2014
Autor: Xmasgirl

Aufgabe
Ein Fahrrad hat 2 Zahnräder mit 30 und 42 Zähnen.
A) wie oft muss man das Pedal treten, bis die beiden Zahnräder wieder in der gleichen Stellung sind?
B) Gibt es 2 Zahnräder, die nach 300 Pedalumdrehungen wieder die gleiche Stellung haben?

Dies ist die Übungsaufgabe für eine Klassenarbeit meines Kindes in der 5. Klasse.
Teilaufgabe A) können wir lösen, auch wenn ich die Aufgabe etwas unklar finde, man weiß ja nicht, an welchem Zahnrad die Pedale sind. Wir haben erst das KGV von 30 und 42 ausgerechnet (= 210) und dann durch die Anzahl Zähne geteilt. Je nachdem, an welchem Zahnrad die Pedale sind, kommt man auf 7 bzw. 5 Umdrehungen.
Für Teilaufgabe B) fällt mir aber außer ausprobieren keine sinnvolle mathematische Lösung ein, bzw. Ich komme nur auf eine Gleichung mit zu vielen unbekannten, aber vielleicht denken wir zu kompliziert? Hat jemand eine Idee?
Ich habe schon nach ähnlichen Aufgaben gesucht aber nichts gefunden. Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Textaufgabe zu ggT und KGV: Antwort
Status: (Antwort) fertig Status 
Datum: 19:30 Mo 19.05.2014
Autor: Hing

hi, wenn man die lösung aus a) rückwärts rechnet, dann kommt man auch auf eine lösung:

Primfaktorenzerlegung:
30=2*3*5
42=2*3   *7
2*3*5*7=210

jetzt rückwärts:
300=2*2*3*5*5

diese faktoren kann man jetzt beliebig kombinieren um zwei zahnräder zu erhalten.

zB
2*3*5=30
2*5=10

oder
2*2=4
3*5*5=75

es fällt auf das eine multiplikation auf das ergebnis 300 kommt.
und ganz allgemein:

[mm] \bruch{300}{x}=y [/mm]

das sind natürlich alles runde scheiben. man kann dann einfach noch beiden zahnrädern die gleiche menge(!) zähne hinzumultiplizieren.

Bezug
                
Bezug
Textaufgabe zu ggT und KGV: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 21:04 Mo 19.05.2014
Autor: Xmasgirl

Vielen Dank für das Lösungsbeispiel. Ich hatte es auch mit Rückwärtsrechnen versucht. Allerdings sind die gegebenen 300 ja eben nicht das KGV der beiden Zahnräder sondern die Anzahl der Umdrehungen eines Zahnrades ( also analog der Ergebnisse 5 bzw. 7 aus Lösung a). Genau daran scheitere ich.
Wenn ich die Lösung aus a) allgemein formuliere heist es doch:
Z1=30; Z2=42
kgV (30;42)=x
x/30=n1
x/42=n2
Für Aufgabe b) bedeutet das, dass ich für n1 oder n2 300 einsetzen kann, aber x und n2  kenne ich nicht und ich weiß auch nicht, wie ich sie berechnen soll. Deine Lösung funktioniert zwar, aber ich verstehe nicht warum.



Bezug
                        
Bezug
Textaufgabe zu ggT und KGV: Antwort
Status: (Antwort) fertig Status 
Datum: 00:17 Di 20.05.2014
Autor: Hing

nimm wieder mein beispiel von vorhin:

[mm] \bruch{300}{x}=y [/mm]

nur wenn du x kennst, lässt sich y berechnen.

in aufgabe b) geht es nicht mehr um die anzahl der zähne! es geht nur darum welche ganzzahligen umdrehungen 300 ergeben. und die lässt sich mit der Primfaktorenzerlegung ganz gut bestimmen.

aus 2*2*3*5*5 kannst du jede zahl oder multiplikation verwenden.

es wäre aber auch 1 und 300 richtig! jedoch auch [mm] \bruch{300}{1,5}=200, [/mm] da keine (ganzzahligen) zähne mehr vorhanden sind, sondern nur eine scheibe mit unendlich vielen zähnen.

Bezug
                                
Bezug
Textaufgabe zu ggT und KGV: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:05 Di 20.05.2014
Autor: Xmasgirl

Hallo an alle!
Ganz herzlichen Dank für eure Antworten! Bei Aufgabe b) haben wir wohl wirklich zu sehr um die Ecke gedacht. Die rechnerischen Lösungen 1 und 300 und 2 und 150 für die Zahnräder würde ich aber ausschließen wollen. Ich habe noch kein Zahnrad mit einem bzw. zwei Zähnen gesehen ;-)

Bezug
                                        
Bezug
Textaufgabe zu ggT und KGV: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:41 Di 20.05.2014
Autor: Hing

gern geschehen.

die anzahl der zähne ist jedoch unerheblich. diese zahlen geben den umfang einen rades an. das würde bedeuten das das dad rad mit dem umfang 1, sich 300x drehen müsste und das rad mit umfang 300 1x.

Bezug
                
Bezug
Textaufgabe zu ggT und KGV: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:20 Mo 19.05.2014
Autor: Teufel

Hi!

Wobei ich bei der b) denken würde, dass man erst nach 300 Schritten wieder zum Ursprung zurück kommt und nicht schon früher!

Hat man 30 und 10, so landet man ja schon nach 30 Schritten wieder am Anfang. Wichtig ist es noch, das beide Zahlen teilerfremd sind. 4 und 75 würde also z.B. gehen.

Bezug
                        
Bezug
Textaufgabe zu ggT und KGV: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:18 Mo 19.05.2014
Autor: abakus


> Hi!

>

> Wobei ich bei der b) denken würde, dass man erst nach 300
> Schritten wieder zum Ursprung zurück kommt und nicht schon
> früher!

>

> Hat man 30 und 10, so landet man ja schon nach 30 Schritten
> wieder am Anfang. Wichtig ist es noch, das beide Zahlen
> teilerfremd sind. 4 und 75 würde also z.B. gehen.

Es gibt eine ganz triviale Lösung: Wenn beide Zahnräder 300 Zähne haben.
Gruß Abakus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 5-7"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]