www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ganzrationale Funktionen" - Testaufgabe k-Funktion
Testaufgabe k-Funktion < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Testaufgabe k-Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:59 So 20.04.2008
Autor: Mathe-Andi

Aufgabe
Gegeben ist die Funktionenschar fk mit fk(x)= 1/k x³ +2x² +kx (k [mm] \not= [/mm] 0).

a) Untersuchen Sie fk auf Schnittpunkte mit der x-Achse.
b) Skizzieren Sie den Graphen der Funktion f4.
c) Der Graph der Funktion f4 und die x-Achse schließen ein Flächenstück vollständig ein. Berechnen Sie dessen Inhalt.
d) Ermitteln Sie k für den Fall, dass der Inhalt dieses Flächenstücks A=42 2/3 FE beträgt.

Hallo.

Habe ich die Aufgaben richtig gelöst, bzw. das Grundlegende daran verstanden? Das ist sozusagen das Basiswissen, was ich für die Klausur nächsten Mittwoch brauche.

Vielen Dank für jede Hilfe! - Andreas

[Dateianhang nicht öffentlich]

[Dateianhang nicht öffentlich]

[Dateianhang nicht öffentlich]

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
Anhang Nr. 2 (Typ: jpg) [nicht öffentlich]
Anhang Nr. 3 (Typ: jpg) [nicht öffentlich]
        
Bezug
Testaufgabe k-Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 21:10 So 20.04.2008
Autor: abakus


> Gegeben ist die Funktionenschar fk mit fk(x)= 1/k x³ +2x²
> +kx (k [mm]\not=[/mm] 0).
>  
> a) Untersuchen Sie fk auf Schnittpunkte mit der x-Achse.
>  b) Skizzieren Sie den Graphen der Funktion f4.
>  c) Der Graph der Funktion f4 und die x-Achse schließen ein
> Flächenstück vollständig ein. Berechnen Sie dessen Inhalt.
>  d) Ermitteln Sie k für den Fall, dass der Inhalt dieses
> Flächenstücks A=42 2/3 FE beträgt.
>  Hallo.
>  
> Habe ich die Aufgaben richtig gelöst, bzw. das Grundlegende
> daran verstanden? Das ist sozusagen das Basiswissen, was
> ich für die Klausur nächsten Mittwoch brauche.
>  
> Vielen Dank für jede Hilfe! - Andreas

Hallo,
im Teil c) hast du einen Formfehler begangen. Da das betrachtete Kurvenstück unter der x-Achse liegt, ist das betreffende bestimmte Integral negativ.
Der gesuchte Flächeninhalt ist dann nicht das Integral selbst, sondern der Betrag davon.
d) ist grundsätzlich falsch. Du wählst deine Integrationsgrenzen immer noch so, als würde k=4 gelten. Für ein anderes k ergibt sich aber eine andere Nullstelle (-k) und damit eine andere Integrationsgrenze.
Viele Grüße
Abakus


>  
> [Dateianhang nicht öffentlich]
>  
> [Dateianhang nicht öffentlich]
>  
> [Dateianhang nicht öffentlich]


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]