www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Termumformung
Termumformung < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Termumformung: Aufgabe1
Status: (Frage) beantwortet Status 
Datum: 15:50 Fr 20.03.2009
Autor: michas-welt

Aufgabe
Bringen Sie den Term in die Form [mm] a\cdot\ [/mm] x+b und geben Sie a bzw. b an.
[mm]\bruch{3}{8}-\bruch{2}{3}x+(1-\bruch{5}{6}x)\cdot(-\bruch{1}{2})[/mm]

Ich komme einfach nicht auf die vorgegebene Lösung von a= [mm] -\bruch{1}{4} [/mm] und b= [mm] -\bruch{1}{8}. [/mm]
Wenn ich die Klammern auflöse komme ich auf

[mm] \bruch{3}{8} [/mm] - [mm] \bruch{2}{3} [/mm] x [mm] -\bruch{1}{2} [/mm] + [mm] \bruch{5}{12} [/mm] x

An dem Punkt komme ich dann nicht mehr weiter. Wie kommt man auf das Ergebniss?

Kurz zu meinem Hintergrund: Ich bin gerade dabei bei einem Fernlerninstitut das Abitur nachzuholen. Nachdem ich Mathe jetzt 1,5 Jahre in der Ecke habe liegenlassen, muss ich jetzt doch ran. Und da fehlt es leider nach 12 Jahren Schulabstinenz an elementarem Grundwissen.

Ich danke euch schon im Voraus für eure Hilfe.

Achja!!! Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Termumformung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:01 Fr 20.03.2009
Autor: schachuzipus

Hallo michas-welt und herzlch [willkommenmr]

> Bringen Sie den Term in die Form [mm]a\cdot\[/mm] x+b und geben Sie
> a bzw. b an.
>  
> [mm]\bruch{3}{8}-\bruch{2}{3}x+(1-\bruch{5}{6}x)\cdot(-\bruch{1}{2})[/mm]
>  
> Ich komme einfach nicht auf die vorgegebene Lösung von a=
> [mm]-\bruch{1}{4}[/mm] und b= [mm]-\bruch{1}{8}.[/mm]
>  Wenn ich die Klammern auflöse komme ich auf
>  
> [mm]\bruch{3}{8}[/mm] - [mm]\bruch{2}{3}[/mm] x [mm]-\bruch{1}{2}[/mm] + [mm]\bruch{5}{12}[/mm]  x [ok]

>  
> An dem Punkt komme ich dann nicht mehr weiter. Wie kommt
> man auf das Ergebniss?

Fasse die Terme mit x und die ohne x zusammen:

[mm] $=\left(\blue{-\frac{2}{3}x+\frac{5}{12}x}\right)+\left(\red{\frac{3}{8}-\frac{1}{2}}\right)$ [/mm]

x ausklammern

[mm] $=\left(\blue{-\frac{2}{3}+\frac{5}{12}}\right)\cdot{}x [/mm] \ + \ [mm] \left(\red{\frac{3}{8}-\frac{1}{2}}\right)$ [/mm]

Nun musst du in beiden Klammern die Brüche addieren.


Dazu mache sie gleichnamig, überlege dir, wie ein gemeinsamer Nenner (am besten der Hauptnenner) aussieht und erweitere eintsprechend!

Geh's mal an ...

>  
> Kurz zu meinem Hintergrund: Ich bin gerade dabei bei einem
> Fernlerninstitut das Abitur nachzuholen. Nachdem ich Mathe
> jetzt 1,5 Jahre in der Ecke habe liegenlassen, muss ich
> jetzt doch ran. Und da fehlt es leider nach 12 Jahren
> Schulabstinenz an elementarem Grundwissen.
>  
> Ich danke euch schon im Voraus für eure Hilfe.
>  
> Achja!!! Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


LG

schachuzipus

Bezug
                
Bezug
Termumformung: Jetzt gehts
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:13 Fr 20.03.2009
Autor: michas-welt

Hallo schachuzipus,

vielen Dank für Deine schnelle Hilfe. So gehts dann auch. Ich wollte wohl die ganze Zeit Äpfel mit Birnen verheiraten. Manchmal steht man eben auf dem Schlauch.

tausend Dank und LG

Micha

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]