www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Sonstiges" - Termabschätzung
Termabschätzung < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Termabschätzung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:28 Do 03.05.2018
Autor: Manu271

Aufgabe
Sei n [mm] \in \IN, [/mm] 0 < [mm] \beta [/mm] < 1, K [mm] =(1-\beta)\bruch{n}{2} [/mm] und 2 [mm] \le [/mm] k [mm] \le [/mm] K.
[mm] \bruch{{n \choose k-1}}{{n-2 \choose k-2}} \sum_{i=1}^{k-1} \left(\bruch{k-1}{n-k+2}\right)^{k-i-1} \le \bruch{n^2}{k(n-2k)} [/mm]

Hallo,

mein Anliegen entspringt nicht direkt einer Aufgabe. Ich versuche zur Zeit ein Paper nachzuvollziehen und kann obige Ungleichung noch nicht rekonstruieren. Ich hoffe jemand von euch kann mir den Gedankengang des Autors erklären?
Die beste obere Schranke die ich gefunden habe ist [mm] \bruch{n(n-1)}{n-k+1}, [/mm] indem ich die Summe durch (k-1)*1 abgeschätzt habe.

Ich bin für jede Hilfe dankbar!

LG
Manu


        
Bezug
Termabschätzung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:21 Do 03.05.2018
Autor: abakus

Du musst die Entstehung dieser Ungleichung nicht zwangsläufig rekonstruieren können. Möglicherweise hat sie ein genialer Geist gefunden und uns unbedeutenden Sterblichen hinterlassen.
;-)

Wie wäre es mit dem Versuch, die einmal vorgegebene Ungleichung per Induktion zu beweisen?


Bezug
        
Bezug
Termabschätzung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:20 Fr 04.05.2018
Autor: fred97


> Sei n [mm]\in \IN,[/mm] 0 < [mm]\beta[/mm] < 1, K [mm]=(1-\beta)\bruch{n}{2}[/mm] und
> 2 [mm]\le[/mm] k [mm]\le[/mm] K.
>  [mm]\bruch{{n \choose k-1}}{{n-2 \choose k-2}} \sum_{i=1}^{k-1} \left(\bruch{k-1}{n-k+2}\right)^{k-i-1} \le \bruch{n^2}{k(n-2k)}[/mm]
>  
> Hallo,
>  
> mein Anliegen entspringt nicht direkt einer Aufgabe. Ich
> versuche zur Zeit ein Paper nachzuvollziehen und kann obige
> Ungleichung noch nicht rekonstruieren. Ich hoffe jemand von
> euch kann mir den Gedankengang des Autors erklären?
>  Die beste obere Schranke die ich gefunden habe ist
> [mm]\bruch{n(n-1)}{n-k+1},[/mm] indem ich die Summe durch (k-1)*1
> abgeschätzt habe.
>
> Ich bin für jede Hilfe dankbar!
>  
> LG
>  Manu
>  

Wenn ich mich nicht vertan habe, so ist die Ungleichung im Falle $ [mm] \beta=1/2$, [/mm] n=12 und k=2 falsch:

mit diesen Zutaten lautet sie

12 [mm] \le [/mm] 9.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]