www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Tensoren
Tensoren < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tensoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:49 Do 04.07.2013
Autor: petapahn

Aufgabe
Wie viele Elemente enthält der Tensor-Vektorraum V [mm] \otimes [/mm] W über endlichen Körpern, also sei z.B. [mm] V=\IF_{2}^{2}, W=\IF_{2}^{3}? [/mm]

Hallo,
Ich dachte mir, dass V [mm] \otimes [/mm] W ja durch die elementaren Tensoren erzeugt wird, das müssten dann [mm] 2^2*2^3=2^{2+3}= 2^5=32 [/mm] sein. Und dann gibt es ja noch die Tensoren, die durch Summen der elementaren Tensoren entstehen. Aber ich weiß nicht, wie ich rausfinden soll, wieviele das sind :(
Kann mir jemand weiterhelfen?
Danke und viele Grüße,
petapahn

        
Bezug
Tensoren: Antwort
Status: (Antwort) fertig Status 
Datum: 08:10 Do 04.07.2013
Autor: sometree

Hallo petapahn ,

> Wie viele Elemente enthält der Tensor-Vektorraum V [mm]\otimes[/mm]
> W über endlichen Körpern, also sei z.B. [mm]V=\IF_{2}^{2}, W=\IF_{2}^{3}?[/mm]
>  
> Hallo,
>  Ich dachte mir, dass V [mm]\otimes[/mm] W ja durch die elementaren
> Tensoren erzeugt wird, das müssten dann [mm]2^2*2^3=2^{2+3}= 2^5=32[/mm]

richtig.
Es gilt ja allgemein [mm] $dim_K (V\otimes_KW) =dim_k(V)\cdot dim_K(W)$ [/mm]

> sein. Und dann gibt es ja noch die Tensoren, die durch
> Summen der elementaren Tensoren entstehen. Aber ich weiß
> nicht, wie ich rausfinden soll, wieviele das sind :(

Die Summen der elementaren Tensoren liegen alle im Erzeugnis, es ergibt sich sogar das gesamte Erzeugnis.

>  Kann mir jemand weiterhelfen?
>  Danke und viele Grüße,
>  petapahn

Edit: Aufgrund massiver Schwammigkeit bis Falschheit ist es sinnvoller sich ein felixf's Mitteilung zu halten.

Bezug
                
Bezug
Tensoren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:10 Do 04.07.2013
Autor: felixf

Moin!

>  >  Ich dachte mir, dass V [mm]\otimes[/mm] W ja durch die
> > elementaren
> > Tensoren erzeugt wird, das müssten dann [mm]2^2*2^3=2^{2+3}= 2^5=32[/mm]
> richtig.

Das ist die Anzahl der elementaren Tensoren, nicht die Anzahl der Elemente im Tensorprodukt.

>  Es gilt ja allgemein [mm]dim_K (V\otimes_KW) =dim_k(V)\cdot dim_K(W)[/mm]

Damit bekommt man dann, dass $V [mm] \otimes [/mm] W$ hier $64 = [mm] 2^{2 \cdot 3}$ [/mm] Elemente enthaelt.

> > sein. Und dann gibt es ja noch die Tensoren, die durch
> > Summen der elementaren Tensoren entstehen. Aber ich weiß
> > nicht, wie ich rausfinden soll, wieviele das sind :(
>  Die Summen der elementaren Tensoren liegen alle im
> Erzeugnis, es ergibt sich sogar das gesamte Erzeugnis.

Ja, die Anzahl der Elemente im Erzeugnis ist aber nicht [mm] $2^2 \cdot 2^3$ [/mm] :-)

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]