www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Gleichungssysteme" - Teilraum/Linearkombination
Teilraum/Linearkombination < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Teilraum/Linearkombination: Verständnis
Status: (Frage) beantwortet Status 
Datum: 14:21 Do 17.11.2011
Autor: sissile

Aufgabe
Vorlesung:(war heute das erste mal Lineare algebra)
Jede teilraum besitzt Basis
[mm] \exists b_1,..b_l \in [/mm] L so dass sich jede Lösung x [mm] \in [/mm] L in der Linearkombination anschreiben lässt:
x = [mm] s_1 b_1 [/mm] + [mm] ...s_l b_l [/mm]
[mm] s_1...s_l \in \IR [/mm] ist eindeutig bestimmt

Abbildung [mm] \Phi: \IR^l [/mm] -> L
[mm] \Phi \begin{pmatrix}s1\\ \cdot\\ \cdot \\s_l \end{pmatrix} :=s_1 b_1 +...s_l b_l [/mm]  ist Bijektion.
L lässt sich durch l reelle Zahlen parametrisieren.
L = [mm] \{ s_1 b_1 +...s_l b_l | s_1 ...s_l \in\IR\} [/mm]



Mir fehlt ein bisschen das Verständnis, ich hoffe ich könnt meine <Fragen bezüglich des Stoffes beantworten!

Als was kann ich mir [mm] b_1,..b_l [/mm] vorstellen? Was stellen die in meinen Glg-System dar?

Ist b  die Basis oder?

Und als was kann ich mir [mm] s_1 ...s_l [/mm]  in einen Glg.-system vorstellen?

x = [mm] s_1 b_1 [/mm] + [mm] ...s_l b_l [/mm]
also lässt sich z.B eine Lösung x als eine LinearKombination darstellen?

Hat jede Lösung die selbe anzahl von Basisvektoren?

Und als was ist die dimension von L zu verstehen?
dim (L) = l
?


Bitte wirklich auf die Fragen eingehen!!!!DANKE!!

        
Bezug
Teilraum/Linearkombination: Antwort
Status: (Antwort) fertig Status 
Datum: 20:40 Do 17.11.2011
Autor: rainerS

Hallo!

> Vorlesung:(war heute das erste mal Lineare algebra)
>  Jede teilraum besitzt Basis
>  [mm]\exists b_1,..b_l \in[/mm] L so dass sich jede Lösung x [mm]\in[/mm] L
> in der Linearkombination anschreiben lässt:
>  x = [mm]s_1 b_1[/mm] + [mm]...s_l b_l[/mm]
>  [mm]s_1...s_l \in \IR[/mm] ist eindeutig
> bestimmt
>  
> Abbildung [mm]\Phi: \IR^l[/mm] -> L
> [mm]\Phi \begin{pmatrix}s1\\ \cdot\\ \cdot \\s_l \end{pmatrix} :=s_1 b_1 +...s_l b_l[/mm]
>  ist Bijektion.
>  L lässt sich durch l reelle Zahlen parametrisieren.
>  L = [mm]\{ s_1 b_1 +...s_l b_l | s_1 ...s_l \in\IR\}[/mm]
>  
> Mir fehlt ein bisschen das Verständnis, ich hoffe ich
> könnt meine <Fragen bezüglich des Stoffes beantworten!
>  
> Als was kann ich mir [mm]b_1,..b_l[/mm] vorstellen? Was stellen die
> in meinen Glg-System dar?
>  
> Ist b  die Basis oder?
>  
> Und als was kann ich mir [mm]s_1 ...s_l[/mm]  in einen Glg.-system
> vorstellen?
>  
> x = [mm]s_1 b_1[/mm] + [mm]...s_l b_l[/mm]
>  also lässt sich z.B eine Lösung
> x als eine LinearKombination darstellen?
>  
> Hat jede Lösung die selbe anzahl von Basisvektoren?
>  
> Und als was ist die dimension von L zu verstehen?
>  dim (L) = l
> ?

Nimm als Beispiel den dreidimensionalen Raum mit Koordinaten $x,y,z$.  Jede Ebene durch den Nullpunkt bildet einen Teilraum. Beispiel ist die xy-Ebene, deren Punkte durch die Koordinaten

[mm] \vektor{s_1\\s_2\\0} [/mm]

beschrieben werden. Eine mögliche Basis besteht aus

[mm] b_1 = \vektor{1\\0\\0} , b_2 = \vektor{0\\1\\0} [/mm] .

Jeder Punkt x in der xy-Ebenen lässt also schreiben als Linearkombination

[mm] s_1 b_1 + s_2 b_2 = s_1 \vektor{1\\0\\0} + s_2 \vektor{0\\1\\0} = \vektor{s_1\\s_2\\0} [/mm] ,

und die Zahlen [mm] $s_1$ [/mm] und [mm] $s_2$ [/mm] sind für einen gegebenen Punkt x eindeutig bestimmt.

Damit gibt es zu der Basis [mm] $b_1,b_2$ [/mm] eine bijektive Abbildung, die jedem Paar [mm] $(s_1,s_2) \in \IR^2$ [/mm] den Punkt [mm] $x\in\IR^3$ [/mm] eineindeutig zuordnet:

[mm] \Phi\vektor{s_1\\s_2} = x [/mm] .

Es ist aber auch möglich eine andere Basis zu wählen, zum Beispiel

[mm] b'_1 = \vektor{1\\1\\0} , b'_2 = \vektor{-1\\1\\0} [/mm] .

Damit gehören zu jedem Punkt zwei andere Zahlen $s'_1,s'_2$, und auch wieder eine andere bijektive Abbildung

[mm] \Phi'\vektor{s'_1\\s'_2} = x [/mm] .

Wie du hier siehst, ist die Zahl der Basiselemente (2) charakteristisch für den Teilraum, das nennt sich die Dimension des Teilraums. Es gibt viele Möglichkeiten, eine Basis zu wählen.

Viele Grüße
   Rainer


Bezug
                
Bezug
Teilraum/Linearkombination: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:24 Fr 18.11.2011
Autor: sissile

danke ;)
Liebe grüße

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]