www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Teilräume
Teilräume < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Teilräume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:55 So 23.11.2003
Autor: jundi

      hello,

ich bin ein neues mitglied.und ich habe 'ne frage(aufgabe):

wie bestimme ich eine basis und dimension einer teilraum.

z.b.:
                  1    1     1
       Es sei U=<(3), (2), (5)>
                  1    3     -3
                 -1    4    -11

Und was wenn der raum zu einem anderen raum addieret wird.
p.s. entschuldigung...ich könnte nicht größe klammern finden...ich hoffe, dass es zu verstehen ist.
         danke.


     jundi


        
Bezug
Teilräume: Antwort
Status: (Antwort) fertig Status 
Datum: 17:22 So 23.11.2003
Autor: Marc

Hallo jundi,

willkommen im MatheRaum :-)!

Eine Basis für einen Vektorraum ist ja ein minimales Erzeugendensystem ("minimal" in dem Sinne von "mit minimaler Anzahl von Vektoren").

Mit anderen Worten: Eine Basis ist eine Menge von linear unabhängigen Vektoren, die den ganzen (Teil-) Raum aufspannen (=Erzeugendensystem).

Die Anzahl der Basisvektoren wird dann einfach Dimension des Vektorraumes genannt.

In deinem konkreten Fall würde ich jetzt folgendermaßen vorgehen:

Konstruiere schrittweise eine Basis, in dem zu sukzessive einen Basisvektor neu in einen bestehende Menge von Basisvektoren aufnimmst, falls der neue Basisvektor linear unabhängig zu den bisherigen Basisvektoren ist. Ich mache es mal vor:

Dein Teilraum hat mindestens die Dimension 1, da er von 0 verschiedene Vektoren enthält.
Ich nehme direkt den ersten Vektor als 1. Basisvektor.

Jetzt prüfe ich, ob U Dimension 2 hat, indem ich mir den zweiten Vektor ansehe: Ist er linear abhängig zu meinen bisherigen Basisvektoren? Falls ja, trägt er keine zusätzliche Richtung bei und kann als Basisvektor ignoriert werden. Falls er linear unabhängig (zu den bisher gefundenen Basisvektoren) ist, erweitere die Menge meiner Basisvektoren um diesen Vektor. Hier ist also der zweite Vektor linear unabhängig zum ersten, also nehmen wir ihn in die Basis auf und wissen, dass U mindestens die Dimension 2 hat.

Dasselbe Spielchen für den dritten Vektor: Er ist ebenfalls linear unabhängig zu den ersten beiden, also nehmen wir ihn mit in unserer Basis auf.

Ergebnis: Die drei genannten Vektoren bilden bereits eine Basis von U, da alle drei Vektoren linear unabhängig sind. Die Dimension von U ist 3.

Deine Frage "Und was wenn der raum zu einem anderen raum addieret wird." verstehe ich nicht ganz. Hast du vielleicht einen zweiten Teilraum V, der auf gleiche Weise wie U gegeben ist, und du willst nun wissen, welche Basis und Dimension der Raum U+V (also die lineare Hülle von U und V) hat?

Bitte melde dich noch mal, falls du das so meinst.

Gruß,
Marc.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]