Teilmenge: Kartesische Produkt < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 13:50 Mo 01.11.2010 | Autor: | Maaadin |
Aufgabe | Welche der folgenden Teilmengen von [mm]\IR^2 := \IR \times\IR[/mm] lassen sich als das kartesisches Produkt zweier Teilmengen [mm]C, D \subset \IR[/mm] darstellen?
[mm](a) A_1 := \{(x, y) \in \IR^2 \vert x [/mm] ist eine rationale Zahl [mm]\}[/mm]
[mm](b) A_2 := \{(x, y) \in \IR^2 \vert x > y \}[/mm]
[mm](c) A_3 := \{(x, y) \in \IR^2 \vert x [/mm] und [mm]y[/mm] sind keine ganzen Zahlen[mm]\}[/mm]
[mm](d) A_4 := \{(x, y) \in \IR^2 \vert x^2 + y^2 \leq\pi \}[/mm] |
Hallo nochmals zusammen!
Bei der Aufgabe hier häng ich total. Ich versteh die Aufgabenstellung nicht einmal.
Bitte um einen kleinen Denkanstoß.
Gruß,
Martin
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 18:52 Mo 01.11.2010 | Autor: | Maaadin |
Hilfe ist immer noch erwünscht =)
|
|
|
|
|
Hallo Martin,
stell Dir die Mengen [mm] $A_i$ [/mm] als Teilmengen des [mm] $\mathbb{R}\times \mathbb{R}$ [/mm] bildlich vor.
Für ein kartesisches Produkt gilt [mm] $A_i [/mm] = [mm] C\times [/mm] D = [mm] p_x(A_i)\times p_y(A_i)$ [/mm] , wobei [mm] $p_x,p_y$ [/mm] die kanonischen Projektionen (senkrechte Projektionen auf die Achsen) sind. Also projiziert man die Mengen auf die Achsen und bildet mit den projizierten Mengen das kartesische Produkt. Wenn das jetzt nicht gleich [mm] $A_i$ [/mm] ist [mm] \ldots
[/mm]
LG mathfunnel
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 22:57 Mo 01.11.2010 | Autor: | Maaadin |
@mathfunnel
Erstmal danke für die Antwort.
Ich bin jedoch etwas überfordert mit der Erklärung, ist vielleicht auch schon ein bisschen zu spät.
Ich habe mir bei der Aufgabe jetzt gedacht, dass ich vielleicht die Teilmengen [mm]C[/mm] und [mm]D[/mm] so gestalten soll, dass das kartesische Produkt davon eine Teilmenge von [mm]\IR[/mm] ist. Dabei gilt jedoch die Bedingung, die in den einzelnen Teilaufgaben gelten, wie z.B. bei (a): [mm]x[/mm] nur aus rationalen Zahlen. Sei die Menge [mm]C[/mm] z.B. alle Werte für [mm]x[/mm] und [mm]D[/mm] alle Werte für [mm]y[/mm]. Dann muss [mm]C[/mm] in (a) [mm]\IQ[/mm] sein und [mm]D[/mm] könnte ich beliebig wählen, außer eben [mm]\IR[/mm].
Liege ich mit der Überlegung halbwegs richtig?
|
|
|
|
|
Hiho,
> Ich habe mir bei der Aufgabe jetzt gedacht, dass ich
> vielleicht die Teilmengen [mm]C[/mm] und [mm]D[/mm] so gestalten soll, dass
> das kartesische Produkt davon eine Teilmenge von [mm]\IR[/mm] ist.
korrekt.
> Dabei gilt jedoch die Bedingung, die in den einzelnen
> Teilaufgaben gelten, wie z.B. bei (a): [mm]x[/mm] nur aus rationalen
> Zahlen. Sei die Menge [mm]C[/mm] z.B. alle Werte für [mm]x[/mm] und [mm]D[/mm] alle
> Werte für [mm]y[/mm]. Dann muss [mm]C[/mm] in (a) [mm]\IQ[/mm] sein und [mm]D[/mm] könnte ich
> beliebig wählen, außer eben [mm]\IR[/mm].
Zu C: Völlig korrekt.
Zu D: Warum solltest du nicht [mm] \IR [/mm] wählen können? Musst du sogar. Bedenke: [mm] \IR [/mm] ist immer Teilmenge von sich selbst!
> Liege ich mit der Überlegung halbwegs richtig?
Jop, und nun auf zu den andern
MFG,
Gono.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 07:00 Di 02.11.2010 | Autor: | Maaadin |
Ach so. Ich dachte, weil in der Aufgabenstellung steht, dass [mm]C, D \subset \IR[/mm] sein soll. Also [mm]\subset[/mm] und nicht [mm]\subseteq[/mm], dass ich [mm]D[/mm] nicht gleich [mm]\IR[/mm] setzen darf.
Vielen Dank für die Hilfe!
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 09:24 Di 02.11.2010 | Autor: | Gonozal_IX |
Huhu,
das hängt davon ab, wie ihr das definiert habt. Da gibt es leider keine feste Regel.
Es gibt: $A [mm] \subset [/mm] B$, wenn gilt A Teilmenge mit $A [mm] \not= [/mm] B$ (so wie du es verstanden hast), dann schreibt man $A [mm] \subseteq [/mm] B$ , wenn man Gleichheit zulassen will.
Gängig ist jedoch zu sagen [mm] $A\subset [/mm] B $ beschreibt ALLE Teilmengen von B (inkl. B selbst), und wenn man Gleichheit ausschliessen möchte, muss es explizit dastehen.
Habt ihr bestimmt mal definiert (auch wenn bei a) eigentlich nur [mm] $\IQ \times \IR$ [/mm] herauskommen kann)
MFG,
Gono.
|
|
|
|