www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Taylorreihe entwickeln
Taylorreihe entwickeln < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Taylorreihe entwickeln: Idee/Tipp
Status: (Frage) beantwortet Status 
Datum: 00:00 Sa 04.06.2011
Autor: Schnitzelfix

Hallo,

gesucht ist die Taylorreihe um Punkt [mm] x_0=0 [/mm] von [mm] f(x)=\bruch{(cos(x^3)-1}{x^4} [/mm]

Als Hilfestellung ist angegeben [mm] cos(x)=\summe_{k=0}^{\infty}-1^k*\bruch{x^{2k}}{(2k)!} [/mm]


Ich weiss wie ich einzelne Taylorglieder bestimmen müsste, mit Hilfe der Ableitungen und den Funktionswerten an [mm] x_0 [/mm] und einsetzen in die Taylorformel.

Wie aber fange ich hier an. Ich vermute ich muss die Hilfestellung irgendwie in f(x) einsetzen und brauche gar keine Ableitungen von f(x) zu bestimmen?

Gruß
S.




Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Taylorreihe entwickeln: Sehr einfach
Status: (Antwort) fertig Status 
Datum: 01:22 Sa 04.06.2011
Autor: HJKweseleit

Für die Entwicklung brauchst du nicht mal die Ableitungen, sondern benutzt die schon angegebene Taylorreihe

1 - [mm] \bruch{x^2}{2!} [/mm] + [mm] \bruch{x^4}{4!} [/mm] - [mm] \bruch{x^6}{6!}... [/mm]

Jetzt ersetzt du jedes x durch [mm] x^3 [/mm] und berechnest die x-Potenzen neu (hinschreiben!). Dann ziehst du von allem 1 ab. Dann dividierst du alle Sumanden durch [mm] x^4. [/mm] Da du x nur mit ganzzahligen Potenzen [mm] \ge [/mm] 0 in der Darstellung findest, hast du bereits die Taylorreihe gefunden.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]