www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Induktion" - Taylorreihe Beweis
Taylorreihe Beweis < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Taylorreihe Beweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:02 Sa 27.01.2007
Autor: Kari

Aufgabe
Sei p(x) = [mm] a_{0} [/mm] + [mm] a_{1}*x+a_{2}*x^{2}...+a_{n}*x^{n} [/mm]  ein relles Polynom. Man zeige: Für jedes [mm] x_{0} \in \IR [/mm] gilt:

p(x)= [mm] \summe_{\nu=0}^{n} \bruch{p^{(\nu)}(x_{o})}{\nu!}*(x-x_{0})^{\nu} [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallöchen!

Ich habe obige Aufgabe als Übung bekommen. Leider komme ich nicht weiter.
Ich versuche, die Aufgabe per vollständiger Induktion nach n zu lösen. Induktionsanfang ging gut. Leider stecke ich dann fest. Ich habe jetzt folgendes stehen.

[mm] p_{n+1}(x)=\summe_{\nu=0}^{n+1}\bruch{p^{\nu}(x_{o})}{\nu!}*(x-x_{0})^{\nu} [/mm]

=> [mm] \summe_{\nu=0}^{n}\bruch{p^{(\nu)}(x_{o})}{\nu!}*(x-x_{0})^{\nu} [/mm] + [mm] \bruch{p^{(n+1)}(x_{o})}{(n+1)!}*(x-x_{0})^{n+1} [/mm]

Hier ist nun mein Problem. Theoretisch könnte ich ja jetzt durch die Induktionsvoraussetzung einsetzen, dass für
[mm] p_{n}(x) [/mm] die Formel auf dem Zettel gilt.
Allerdings habe ja jetzt noch immer den (n+1)sten Term stehen.

Damit schlage ich mich jetzt schon ewig rum. Hat einer von euch vielleicht einen Tip, wie ich dieses Gleichungsgewirr sinnvoll auflösen kann? Ist der Ansatz vielleicht schon totaler Mist? Ich rechne mir hier schon seit Tagen den Wolf und komme einfach nicht auf eine schöne Lösung.

Es wäre prima, wenn ihr helfen könntet.

Danke
Gruß Kari


        
Bezug
Taylorreihe Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 23:48 Sa 27.01.2007
Autor: angela.h.b.


> Sei p(x) = [mm]a_{0}[/mm] + [mm]a_{1}*x+a_{2}*x^{2}...+a_{n}*x^{n}[/mm]  ein
> relles Polynom. Man zeige: Für jedes [mm]x_{0} \in \IR[/mm] gilt:
>  
> p(x)= [mm]\summe_{\nu=0}^{n} \bruch{p^{(\nu)}(x_{o})}{\nu!}*(x-x_{0})^{\nu}[/mm]
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Hallöchen!
>  
> Ich habe obige Aufgabe als Übung bekommen. Leider komme ich
> nicht weiter.
>  Ich versuche, die Aufgabe per vollständiger Induktion nach
> n zu lösen.

Hallo,

ich glaube nicht, daß Du mit solch einer Induktion zum Ziel kommst.
Falls doch, brauchst Du auf jeden Fall die ganzen Ableitungen von p an der Stelle [mm] x_0, [/mm] die dann eingesetzt werden müssen. Mich dünkt, das gibt ein Gewurschtel mit Doppel- (oder gar Dreifach?-)summen.

So geht es auf jeden Fall einfacher:

Es sei p(x)  obiges Polynom, [mm] x_0 \in \IR [/mm]

[mm] T_n [/mm] sei das n-te Taylorpolynom von p mit Entwicklungspunkt [mm] x_0, [/mm]
also

[mm] T_n(x)=\summe_{\nu=0}^{n} \bruch{p^{(\nu)}(x_{o})}{\nu!}*(x-x_{0})^{\nu} [/mm]

Es ist zu zeigen, daß [mm] T_n(x)=p(x). [/mm]

Jetzt das Lagrange-Restglied ins Spiel bringen:
es gibt ein [mm] \vartheta [/mm] zwischen [mm] x_0 [/mm] und x mit

[mm] p(x)=T_n(x) [/mm] + [mm] \bruch{p^{(n+1)}(\vartheta)}{(n+1)!}(x-x_0)^{n+1} [/mm]

Nun ist aber die (n+1)-te Ableitung eines Polynoms vom Grad n  =0

==> [mm] p(x)=T_n(x) [/mm]

Gruß v. Angela


Bezug
                
Bezug
Taylorreihe Beweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:58 So 28.01.2007
Autor: Kari

Hallo Angela!

Vielen Dank für Deinen Hinweis! :) Ich hab gestern schon fast geahnt, dass das so nicht geht. Ich war nämlich auch bei diversen Doppelsummen mit Binomialkoeffizienten etc angekommen *seufz*

Mein Problem ist, dass wir die Taylorreihe als solches noch nicht definiert haben und damit auch das Restglied leider nicht. :(

Wie sieht es denn mit so einer Idee aus:

Ich kann mir ja für [mm] x_{}=0 [/mm] alle [mm] a_{n} [/mm] berechnen. Die geben mir dann in der Summe einen Ausdruck, der aussieht wie das gewünschte Taylorpolynom, nur dass da dann steht

P(x)= [mm] \summe_{\nu=1}^{n}\bruch{p^{(\nu)}(0)}{n!}*x^{n} [/mm]

Jetzt fehlt doch nur die Aussage, dass das auch für alle [mm] x_{0} [/mm] gilt. Nur, wie komme ich da hin? Gibt es da vielleicht einen kleinen Tip?

Ich bin langsam echt völlig am Ende mit meinem Latein. Dummerweise brauche ich diese Aufgabe noch dringend, um meinen Schein zu bekommen *seufz*

Grüße und einen schönen Sonntag
Kari

Bezug
                        
Bezug
Taylorreihe Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 11:48 So 28.01.2007
Autor: angela.h.b.


>  
> Mein Problem ist, dass wir die Taylorreihe als solches noch
> nicht definiert haben und damit auch das Restglied leider
> nicht. :(

Hallo,

Du könntest es natürlich nach allen Regeln der Kunst herleiten - natürlich solltest Du dafür im Interesse des ziel-, zeit und erfolgsorientierten Arbeitens ein einschlägiges Buch zur Hilfe nehmen...

>  
> Wie sieht es denn mit so einer Idee aus:
>  
> Ich kann mir ja für [mm]x_{}=0[/mm] alle [mm]a_{n}[/mm] berechnen. Die geben
> mir dann in der Summe einen Ausdruck, der aussieht wie das
> gewünschte Taylorpolynom, nur dass da dann steht
>  
> P(x)= [mm]\summe_{\nu=1}^{n}\bruch{p^{(\nu)}(0)}{n!}*x^{n}[/mm]
>  
> Jetzt fehlt doch nur die Aussage, dass das auch für alle
> [mm]x_{0}[/mm] gilt. Nur, wie komme ich da hin? Gibt es da
> vielleicht einen kleinen Tip?

Ob das jetzt der finale Rettungstip ist, weiß ich nicht, ich hab's nicht ausgerechnet, es ist mir zu mühsam.

Ich würde ohne Taylor vermutlich irgendwie so herumbasteln:

[mm] p(x)=a_0+a_1x+...+a_nx^n [/mm]

= [mm] a_0(x-x_0)^0 [/mm] + [mm] (a_1(x-x_0)^1 [/mm] - [mm] a_1x_0) [/mm] + [mm] (a_2(x-x_0)^2 [/mm] + [mm] 2a_2xx_0 [/mm] - [mm] a_2x_0^2)+...+ (a_n(x-x_0)^n [/mm] - [mm] \summe( [/mm] Gedöns mit Binomialkoeffizienten))

Gruß v. Angela



Bezug
                                
Bezug
Taylorreihe Beweis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:13 So 28.01.2007
Autor: Kari

Hallo Angela!

Nochmals vielen Dank für Deine Mühe!
Ich werde jetzt Deinen ersten Tip beherzigen und den Taylor und Restglied mit Hilfe meines schlauen Buches herleiten ;) Bei dem anderen Weg hast Du wohl leider Recht, das ist auch ein fürchterliches Herumgedönse.

Schönen Sonntag noch!
LG Kari

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]