www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - Taylorpolynome
Taylorpolynome < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Taylorpolynome: Idee,Tipp
Status: (Frage) beantwortet Status 
Datum: 21:47 Mo 07.01.2008
Autor: Tobi86

Aufgabe
Bestimmen Sie für f : D → R und das n-te Taylorpolynom mit dem Entwicklungspunkt x0, wenn
a)n = 2, x0 = 1 und f(x) := [mm] x^{2}+ [/mm] 2*x + 2 für x ∈ R=:D
b)n =75, x0= 0 und f(x) := [mm] \bruch{1}{1+2x} [/mm] für x ∈ D := R

Hallo Leute,
ich soll die beiden Taylorpolynome berechnen, bei aufgabe 2 habe ich noch etwas hilfe bekommen,komme aber auch nicht wirklich weiter!!ich soll bei a) die x durch x-1 ersetzen, würde dann [mm] (x-1)^{2}+2(x-1)+2+2x-1+2 [/mm] aber ich verstehe einfach nicht,wie man auf die 2x-1+2 kommt!!:( wenn man alles zusammenfasst,soll man [mm] (x-1)^{2} [/mm] +2(x-1)+2(x-1)+2+3 herausbekommen,aber ich komme irgendwie garnicht darauf!!
bei der aufgabe b) kann man doch die funktion gleich in eine potenzreihe schreiben,oder? wenn ja,wie würde diese reihe aussehen??
bitte um  eure schnelle hilfe!!

        
Bezug
Taylorpolynome: Antwort
Status: (Antwort) fertig Status 
Datum: 19:28 Di 08.01.2008
Autor: Somebody


> Bestimmen Sie für f : D → R und das n-te
> Taylorpolynom mit dem Entwicklungspunkt x0, wenn
>  a)n = 2, x0 = 1 und f(x) := [mm]x^{2}+[/mm] 2*x + 2 für x ∈
> R=:D
>  b)n =75, x0= 0 und f(x) := [mm]\bruch{1}{1+2x}[/mm] für x ∈ D
> := R
>  Hallo Leute,
>  ich soll die beiden Taylorpolynome berechnen, bei aufgabe
> 2 habe ich noch etwas hilfe bekommen,komme aber auch nicht
> wirklich weiter!!ich soll bei a) die x durch x-1 ersetzen,
> würde dann [mm](x-1)^{2}+2(x-1)+2+2x-1+2[/mm] aber ich verstehe
> einfach nicht,wie man auf die 2x-1+2 kommt!!:( wenn man
> alles zusammenfasst,soll man [mm](x-1)^{2}[/mm] +2(x-1)+2(x-1)+2+3
> herausbekommen,aber ich komme irgendwie garnicht darauf!!

Es ist doch [mm] $\blue{x^2=(x-1)^2+2x-1}$ [/mm] und [mm] $\green{2x=2(x-1)+2}$ [/mm] also erhalten wir, durch Einsetzen der rechten Seiten dieser Beziehungen für deren linke Seiten in [mm] $x^2+2x+2$, [/mm] dass gelten muss

[mm]\begin{array}{lcl} x^2+2x+2&=&\blue{(x-1)^2+2x-1}+\green{2(x-1)+2}+2\\ &=& (x-1)^2+4(x-1)+5 \end{array}[/mm]

Damit hast Du eine vollständige Entwicklung der Funktion um [mm] $x_0=1$ [/mm] und kannst somit Dein Taylorpolynom problemlos an dieser Form ablesen.

>  bei der aufgabe b) kann man doch die funktion gleich in
> eine potenzreihe schreiben,oder? wenn ja,wie würde diese
> reihe aussehen??

Stichwort geometrische Reihe (konvergiert für $|2x|<1$, d.h. [mm] $|x|<\frac{1}{2}$, [/mm] absolut):

[mm]\frac{1}{1+2x}=\sum_{k=0}^\infty (2x)^k=\sum_{k=0}^\infty 2^k (x-0)^k[/mm]


Das gesuchte Taylorpolynom ist somit [mm] $\sum_{k=0}^{75} 2^k(x-0)^k$ [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]