www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Taylorpolynom mit Restglied
Taylorpolynom mit Restglied < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Taylorpolynom mit Restglied: Approximationsfehler
Status: (Frage) beantwortet Status 
Datum: 16:28 Di 18.02.2014
Autor: mtr-studi

Aufgabe
Berechnen Sie das dritte Taylorpolynom [mm] T_{f,3,x_0}(x) [/mm] der Funktion [mm] f:\mathbb{R}->\mathbb{R} [/mm] mit [mm] f(x)=x^3+3x^2+3x+1 [/mm] an der Stelle [mm] x_0=-1. [/mm] Was kann über den Approximationsfehler [mm] |f(x)-T_{f,3,x_0}(x)| [/mm] ausgesagt werden?

Hallo Leute,
ich habe eine Frage zum Approximationsfehler.

Mein Vorgehen:

[mm] f(x)=x^3+3x^2+3x+1 f(-1)=(-1)^3+3(-1)^2+3(-1)+1=0 [/mm]

[mm] f'(x)=3x^2+6x+3 f'(-1)=3(-1)^2+6(-1)+3=0 [/mm]

$f''(x)=6x+6     f''(-1)=6(-1)+6=0$

$f'''(x)=6    f'''(-1)=6$

[mm] f^{(4)}=0 [/mm]

[mm] T_{f,3,-1}(x)=0+\frac{0}{1!}(x+1)+\frac{0}{2!}(x+1)^2+\frac{6}{3!}(x+1)^3=(x+1)^3 [/mm]


Restglied (Lagrange)

[mm] R_{3,-1}(x)=\frac{0}{4!}(x+1)^4=0 [/mm]


Was kann ich jetzt für eine Auskunft über den Approximationsfehler geben (mein Restglied ist ja null)?


Vielen Dank im Voraus!



        
Bezug
Taylorpolynom mit Restglied: Antwort
Status: (Antwort) fertig Status 
Datum: 16:41 Di 18.02.2014
Autor: fred97


> Berechnen Sie das dritte Taylorpolynom [mm]T_{f,3,x_0}(x)[/mm] der
> Funktion [mm]f:\mathbb{R}->\mathbb{R}[/mm] mit [mm]f(x)=x^3+3x^2+3x+1[/mm] an
> der Stelle [mm]x_0=-1.[/mm] Was kann über den Approximationsfehler
> [mm]|f(x)-T_{f,3,x_0}(x)|[/mm] ausgesagt werden?
>  Hallo Leute,
>  ich habe eine Frage zum Approximationsfehler.
>  
> Mein Vorgehen:
>  
> [mm]f(x)=x^3+3x^2+3x+1 f(-1)=(-1)^3+3(-1)^2+3(-1)+1=0[/mm]
>  
> [mm]f'(x)=3x^2+6x+3 f'(-1)=3(-1)^2+6(-1)+3=0[/mm]
>  
> [mm]f''(x)=6x+6 f''(-1)=6(-1)+6=0[/mm]
>  
> [mm]f'''(x)=6 f'''(-1)=6[/mm]
>  
> [mm]f^{(4)}=0[/mm]
>
> [mm]T_{f,3,-1}(x)=0+\frac{0}{1!}(x+1)+\frac{0}{2!}(x+1)^2+\frac{6}{3!}(x+1)^3=(x+1)^3[/mm]
>  
>
> Restglied (Lagrange)
>  
> [mm]R_{3,-1}(x)=\frac{0}{4!}(x+1)^4=0[/mm]
>
>
> Was kann ich jetzt für eine Auskunft über den
> Approximationsfehler geben (mein Restglied ist ja null)?

Der Fehler ist =0    !!!

Mach Dir klar: [mm] x^3+3x^2+3x+1=(x+1)^3 [/mm]

FRED

>
>
> Vielen Dank im Voraus!
>
>  


Bezug
                
Bezug
Taylorpolynom mit Restglied: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:48 Di 18.02.2014
Autor: mtr-studi

Aufgabe
Berechnen Sie cos(1) mit einer Genauigkeit von [mm] \frac{1}{10} [/mm] mit Hilfe eines geeigneten Taylorpolynoms. (Das Ergebnis ist zu begründen)

Hallo,
danke für die Antwort.

Ich habe hier auch noch eine andere Aufgabe, wo es tatsächlich ein Restglied geben wird.

Wie könnte ich hier denn vorgehen?? Woher weiß man das wie vielte Tayplorpolynom man braucht.


Vielen Dank im Voraus!

Bezug
                        
Bezug
Taylorpolynom mit Restglied: Antwort
Status: (Antwort) fertig Status 
Datum: 16:57 Di 18.02.2014
Autor: fred97

Für n [mm] \in \IN [/mm] ist (bei f(x)=cosx mit Entwicklungsstelle 0)

[mm] |R_{n,0}(1)| \le \bruch{1}{n!} [/mm]

Bestimme also n so, dass [mm] \bruch{1}{n!} \le \bruch{1}{10} [/mm]

FRED



Bezug
                                
Bezug
Taylorpolynom mit Restglied: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:03 Di 18.02.2014
Autor: mtr-studi

Es müsste also n=4 sein, müsste ich das Taylorpolynom noch aufschreiben oder ist die Aufgabe schon erfüllt, wenn man das richtige n gefunden hat?

Vielen Dank im Voraus!

Bezug
                                        
Bezug
Taylorpolynom mit Restglied: Antwort
Status: (Antwort) fertig Status 
Datum: 17:05 Di 18.02.2014
Autor: fred97


> Es müsste also n=4 sein, müsste ich das Taylorpolynom
> noch aufschreiben oder ist die Aufgabe schon erfüllt, wenn
> man das richtige n gefunden hat?

nein. Die Aufgabe lautet doch

"Berechnen Sie cos(1) mit einer Genauigkeit von $ [mm] \frac{1}{10} [/mm] $"

FRED

>  
> Vielen Dank im Voraus!


Bezug
                                                
Bezug
Taylorpolynom mit Restglied: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:43 Di 18.02.2014
Autor: mtr-studi

Ok, vielen Dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]