www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Taylorpolynom
Taylorpolynom < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Taylorpolynom: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 12:32 So 14.04.2013
Autor: love

Hallo, ich hoffe Ihr könnt mir weiterhelfen. Ich muss bei dieser Aufgabe das Taylorpolynom bestimmen.
[mm] f(x)=log(x^2) [/mm] im Entwicklungspunkt x=e und k=2. Ich habe zunächst die Ableitungen ausgerechnet:
erste Ableitung lautet: [mm] \bruch{2}{x}, [/mm] wenn ich e für x einsetze kommt da [mm] \bruch{2}{e} [/mm] raus. die zweite Ableitung lautet dann [mm] \bruch{-2}{x^2} [/mm] und wenn ich wiederum e einsetze kommt da [mm] \bruch{-2}{e^2} [/mm] raus. Meine Frage ist jetzt kann man zB [mm] log(e^2) [/mm] oder [mm] \bruch{2}{e} [/mm] oder [mm] \bruch{-2}{e^2} [/mm] weiterumformen.ICh weiss jetzt nicht wie ich das ausdrücken soll,aber gibt es irgendeine zahl für diese?Oder reicht es aus wenn ich es einfach so hinschreibe als Ergebnis

        
Bezug
Taylorpolynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:34 So 14.04.2013
Autor: love

Und noch eine Frage was ist den [mm] log(e^2)? [/mm] Gibt es dafür eine Zahl wie 1 oder 0?

Bezug
                
Bezug
Taylorpolynom: Antwort
Status: (Antwort) fertig Status 
Datum: 12:37 So 14.04.2013
Autor: fred97


> Und noch eine Frage was ist den [mm]log(e^2)?[/mm] Gibt es dafür
> eine Zahl wie 1 oder 0?

Wenn Du mit log den Log. zur Basis e meinst, so ist

  
[mm]log(e^2)=2[/mm]

fred

Bezug
                        
Bezug
Taylorpolynom: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:38 So 14.04.2013
Autor: love

vielen lieben Dank..:) und bei den anderen bleiben die so

Bezug
        
Bezug
Taylorpolynom: Antwort
Status: (Antwort) fertig Status 
Datum: 12:42 So 14.04.2013
Autor: notinX

Hallo,

> Hallo, ich hoffe Ihr könnt mir weiterhelfen. Ich muss bei
> dieser Aufgabe das Taylorpolynom bestimmen.
>  [mm]f(x)=log(x^2)[/mm] im Entwicklungspunkt x=e und k=2. Ich habe

die Funktion hängt gar nicht von k ab...

> zunächst die Ableitungen ausgerechnet:
>  erste Ableitung lautet: [mm]\bruch{2}{x},[/mm] wenn ich e für x
> einsetze kommt da [mm]\bruch{2}{e}[/mm] raus. die zweite Ableitung
> lautet dann [mm]\bruch{-2}{x^2}[/mm] und wenn ich wiederum e
> einsetze kommt da [mm]\bruch{-2}{e^2}[/mm] raus. Meine Frage ist
> jetzt kann man zB [mm]log(e^2)[/mm] oder [mm]\bruch{2}{e}[/mm] oder
> [mm]\bruch{-2}{e^2}[/mm] weiterumformen.ICh weiss jetzt nicht wie
> ich das ausdrücken soll,aber gibt es irgendeine zahl für
> diese?Oder reicht es aus wenn ich es einfach so hinschreibe
> als Ergebnis  

die letzten beiden würde ich einfach so stehen lassen, [mm] $\log(e^2)$ [/mm] kann man noch vereinfachen unter Anwendung der Logarithmengesetze und der Voraussetzung, dass der natürliche Logarithmus gemeint ist.

Gruß,

notinX


Edit: Hups, hab gar nicht mitbekommen, dass fred97 schon geantwortet hat.

Bezug
                
Bezug
Taylorpolynom: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:46 So 14.04.2013
Autor: love

danke schönnn:)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]