www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Taylorkoeffiziente
Taylorkoeffiziente < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Taylorkoeffiziente: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 22:59 Di 17.01.2006
Autor: aktava

Hallo, Ich muss beweisen die Eindeutigkeit der Zerlegung einer Funktion in ein Polynom n-ten Grades und einen Rest höherer Ordnung.

Es gelte f( [mm] x_{0}+h)=a_{0}+a_{1}h+a_{2}h^{2}+...+a_{n}h^{n}+O(h^{n})=b_{0}+b_{1}h+b_{2}h^{2}+...+b_{n}h^{n}+O(h^{n}) [/mm] für h [mm] \to0 [/mm]
Dann gilt [mm] b_{j}=a_{j} [/mm] für alle j=0, ....,n

Muss man beweisen durch Widerspruch.

Hat jemand Idee?

Danke

        
Bezug
Taylorkoeffiziente: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:59 Mi 18.01.2006
Autor: masha

Hallo,

die Antwort ist schon bei dir in der Aufgabestellung angegeben :

Widerspruch bekommt man, wenn  angenommen wird, dass deine Funktion als [mm] P_n(h)+O_1(h) [/mm] und [mm] Q_n(h)+O_2(x) [/mm] (zwei verschiedene Polinome n-ten Grades  + Rest )dargestellst werden kann. Zwei unterschiedliche Polinome bedeutet, dass bei gleichen Exponenten von h ungleiche Koeffiziente stehen, also [mm] a_i [/mm]  ≠ [mm] b_i [/mm]
Danach betrachtet man Differenz :
[mm] P_n(h)+O_1(h)-(Q_n(h)+O_2(x)= [/mm] f(x) - f(x)=0
Dann, wenn du  [mm] \limes_{h \to \ 0}f(x) [/mm] dir anschaust, bekommst du eine nach einanderem [mm] a_i [/mm] = [mm] b_i. [/mm]
Die Koeffiziente des Polinoms bekommt man wegen der Eindeutigkeit des Limises :

[mm] a_0 [/mm] = [mm] \limes_{h \to \ 0}f [/mm] (x)
[mm] a_1 [/mm] =  [mm] \limes_{h \to \ 0} \bruch{f(x)-a_0}{h} [/mm]
...........................................
[mm] a_n [/mm] = [mm] \limes_{h \to \ 0} \bruch{f(x)-(a_0+...+a_{n-1}*h^{n-1})}{h^n} [/mm]

LG


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]