www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Taylorentwicklung
Taylorentwicklung < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Taylorentwicklung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:09 Mo 14.04.2008
Autor: rastaman

Aufgabe
Entwickeln Sie jeweils die Funktion g(h,k) = f(h+k,y+k) nach Potenzen von h und k (zumindest bis zu den kubischen Termen).

f(x,y) = x² + y² + xy - 6x - 4y +5

Hallo bin neu hier im Forum

In der Lösung steht:
f(x+h,y+k) = f(x,y) + (2x+y-6)h + (2y+x-4)k + [mm] h^2 [/mm] + hk + [mm] k^2 [/mm]

Was genau mache ich mit der Taylorentwicklung hier?
Da gibt es ja so eine schöne Formel für 2 unabhängige Variablen (möchte ich jetzt nicht eintippen)

Um auf dieses Ergebnis zu kommen, hätte ich jetzt einfach alle x durch (x+h) und alle y durch (y+k) ersetzt und umgeformt.
Aber wo bleibt der Taylor? Wo die Entwicklung?

Noch dazu gibt ja der Tyalor das Verhalten der Funktion in der Nähe eines Punktes an, oder?
Nein warte, das ist die Tangentialebene.
Was ist der Taylor dann?
Ich bin verwirrt.

Bitte um Hilfe


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Taylorentwicklung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:46 Mo 14.04.2008
Autor: MathePower

Hallo rastaman,

[willkommenmr]

> Entwickeln Sie jeweils die Funktion g(h,k) = f(h+k,y+k)
> nach Potenzen von h und k (zumindest bis zu den kubischen
> Termen).
>  
> f(x,y) = x² + y² + xy - 6x - 4y +5
>  Hallo bin neu hier im Forum
>  
> In der Lösung steht:
>  f(x+h,y+k) = f(x,y) + (2x+y-6)h + (2y+x-4)k + [mm]h^2[/mm] + hk +
> [mm]k^2[/mm]
>  
> Was genau mache ich mit der Taylorentwicklung hier?
>  Da gibt es ja so eine schöne Formel für 2 unabhängige
> Variablen (möchte ich jetzt nicht eintippen)

[mm]f\left(x+h, \ y+k\right)=\summe_{n=0}^{\infty}\summe_{i=0}^{n}\bruch{1}{i! \ \left(n-i\right)!}* \bruch{\partial \ f^{n}}{\partial x^{i} \partial y ^{n-i}} |_{\left(x,y\right)}*h^{i}*k^{n-i}[/mm]


>  
> Um auf dieses Ergebnis zu kommen, hätte ich jetzt einfach
> alle x durch (x+h) und alle y durch (y+k) ersetzt und
> umgeformt.

Genau.

>  Aber wo bleibt der Taylor? Wo die Entwicklung?

In  der Aufgabenstellung steht nichts von Taylor.

Das Taylorpoloynom kannst ja mal spasseshalber ausrechnen.

>  
> Noch dazu gibt ja der Tyalor das Verhalten der Funktion in
> der Nähe eines Punktes an, oder?
> Nein warte, das ist die Tangentialebene.
>  Was ist der Taylor dann?

Die Tangentialebene wird aus dem Taylorpolynom 1. Grades aufgebaut.

>  Ich bin verwirrt.
>  
> Bitte um Hilfe
>  
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Gruß
MathePower

Bezug
                
Bezug
Taylorentwicklung: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:02 Di 15.04.2008
Autor: rastaman

Danke
Dachte wenn da "Entwickeln Sie" steht, daß da gleich der Taylor gemeint, ist.
Diese abstrakte Mathematik ist nichts für mich.

Jetzt sind wir grade bei der Poisson Gleichung.
Also bei der Herleitung der Lösung, pffff.... echt kein Plan was da abgeht.
Hoffentlich klappts bei der Anwendung, wenn nicht weiß ich ja wo ich mich melden muss.

MFG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]