www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Taylor um Minimum
Taylor um Minimum < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Taylor um Minimum: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 12:36 Di 26.05.2009
Autor: Tobus

Aufgabe
Potentialkurven zweiatomiger Moleküle werden häufig durch sog. Morse-Potentiale der Form [mm] v(r)=-a*(2*e^{-b(r-c)}-e^{-2b(r-c)}) [/mm] angenähert. Wie lautet das Taylorpolynom 2. Grades von V(r), wenn die Entwicklung um das Minimum von V(r) vorgenommen wird ?

Hallo,
ich habe hier das Problem, dass ich um das Minimum entwickeln muss.
Ich habe es auch mit dem Taschenrechner mal probiert, komme aber auf kein Ergebnis.

Ich würde so vorgehen:
1. Minimum von V(r) berechnen. Dazu die Ableitung bilden und null setzen
2. Taylorentwicklung mit dem Ergebnis von 1. machen

Was mache ich falsch ?

DANKE

        
Bezug
Taylor um Minimum: Rückfrage
Status: (Antwort) fertig Status 
Datum: 13:52 Di 26.05.2009
Autor: generation...x

Prinzipiell scheints mir der richtige Weg. Um zu wissen, was du falsch machst, müsstest du erstmal sagen, was genau du gemacht hast...

Das Minimum lautet?

Wie sieht deine Taylorentwicklung aus?

Bezug
                
Bezug
Taylor um Minimum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:59 Di 26.05.2009
Autor: Tobus

Hallo,
das erste Problem habe ich bei der Ableitung. Hier bin ich mir überhaupt nicht sicher:

[mm] v'(r)=2*e^{-b(r-c)}*a*b-2*a*b*e^{2*b*c-2*b*r} [/mm]

Hier bekomme ich für das Minimum keine sinnvollen Werte.

Ist meine Ableitung überhaupt richtig ?


Bezug
                        
Bezug
Taylor um Minimum: Weiter so
Status: (Antwort) fertig Status 
Datum: 14:28 Di 26.05.2009
Autor: generation...x

Sieht doch gut aus. Warum hast du den Exponenten in der zweiten Exp.funktion umgestellt? Lass den Exponenten doch stehen. Dann gleich 0 setzen und durch 2ab teilen. Mach mal...

Bezug
                                
Bezug
Taylor um Minimum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:56 Di 26.05.2009
Autor: Tobus

OK, habe gleich 0 gesetzt und nach r aufgelöst:

r=c und a*b=0

Also würde ich um r=c entwickeln ? Sorry stehe gerade auf dem Schlauch ;)

Bezug
                                        
Bezug
Taylor um Minimum: So geht's
Status: (Antwort) fertig Status 
Datum: 15:36 Di 26.05.2009
Autor: generation...x

Jo, geh mal davon aus, dass a und b nicht 0 werden dürfen, dann hast du r=c. Da lässt sich doch leicht eine Taylor-Entwicklung machen, da die Exponenten dann 0 sind und bekanntlich ist [mm] e^0=1. [/mm]

Bezug
                                                
Bezug
Taylor um Minimum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:48 Di 26.05.2009
Autor: Tobus

Super, dann habe ich raus:
[mm] P(r)=-a+a*b^{2}*(x-c)^{2} [/mm]

Das stimmt hoffe ich ;)

DANKE

Bezug
                                                        
Bezug
Taylor um Minimum: Antwort
Status: (Antwort) fertig Status 
Datum: 15:53 Di 26.05.2009
Autor: generation...x

Denk schon [happy] - jedenfalls fast. Rechts müsste etwas wie (x-r+c) stehen oder? Und die Variable links sollte x sein.

Bezug
                                                                
Bezug
Taylor um Minimum: Antwort
Status: (Antwort) fertig Status 
Datum: 19:29 Di 26.05.2009
Autor: MathePower

Hallo generation...x,


> Denk schon [happy] - jedenfalls fast. Rechts müsste etwas
> wie (x-r+c) stehen oder? Und die Variable links sollte x
> sein.


Es muss hier stehen:

[mm]P(r)=-a+a\cdot{}b^{2}\cdot{}(\red{r}-c)^{2}[/mm]

, da eine von r abhängige Funktion um c entwickelt wurde.


Gruß
MathePower

Bezug
                                                                        
Bezug
Taylor um Minimum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:47 Di 26.05.2009
Autor: generation...x

Stimmt natürlich. Mir war wohl der Kaffee ausgegangen...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]