www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Taylor - tan x abschätzen
Taylor - tan x abschätzen < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Taylor - tan x abschätzen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:16 Di 05.02.2008
Autor: abi2007LK

Hallo,

Aufgabe: Berechnen Sie das Taylorpolynom [mm] T_{3,0}f [/mm] dritten Graded mit Entwicklungspunkt [mm] x_0 [/mm] = 0 für die Funktion f(x) = tan x, |x| < [mm] \frac{\pi}{2}. [/mm] Zeigen Sie, dass

|tan x - [mm] T_{3,0}f(x)| \le 10^{-5} [/mm] für |x| [mm] \le \frac{1}{10} [/mm]

Okay. Das Taylorpolynom zu berechnen war kein Problem:

[mm] T_{3,0}f(x) [/mm] = x + [mm] \frac{x^3}{3} [/mm]

Nun muss ich allerdings noch |tan x - [mm] T_{3,0}f(x)| [/mm] nach oben abschätzen. Ich kann ja nicht einfach für x zb. [mm] \frac{1}{10} [/mm] einsetzen, da ich ja alle Werte [mm] \le \frac{1}{10} [/mm] abdecken muss. Es muss wohl der tan x für |x| [mm] \le \frac{1}{10} [/mm] möglichst gut abgeschätzt werden... oder?

Dazu habe ich mir zwei Dinge überlegt. tan x ist für |x| [mm] \le \frac{1}{10} [/mm] sicher kleiner als 1, da der sin x < cos x für |x| [mm] \le \frac{1}{10}. [/mm] Aber die Schätzung ist wohl zu grob.

Zweite Schätzung, bei der ich mir aber nicht sicher bin:

tan x [mm] \le [/mm] 0.100335 für |x| [mm] \le \frac{1}{10}, [/mm] weil [mm] tan(\frac{1}{10}) [/mm] = 0.100335 und da tan x zwischen 0 und [mm] \frac{1}{10} [/mm] monoton steigt ist sein Wert für jedes x [mm] \le \frac{1}{10} [/mm] eben kleiner als sein Wert bei [mm] \frac{1}{10}. [/mm]

Darf man sowas tun und ist das richtig?

        
Bezug
Taylor - tan x abschätzen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:16 Di 05.02.2008
Autor: abakus

Ich denke mal, es geht nicht um das Taylorpolynom selbst, sondern um eine Abschätzung des Restglieds!
(Konkreter kann ich leider nicht werden, das ist 20 Jahre her.)

Bezug
                
Bezug
Taylor - tan x abschätzen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 16:10 Mi 06.02.2008
Autor: abi2007LK

Hallo,

danke. Ich habe nun das Restglied mittels der Darstellungsformel von Lagrange gebildet:

[mm] R_n(x) [/mm] = [mm] \frac{f^{n+1}(\xi)}{(n+1)!}(x-x_0)^{n+1} [/mm] mit [mm] \xi [/mm] zwischen [mm] x_0 [/mm] und x.

in meinem Falle also:

= [mm] \frac{f^{3+1}(\xi)}{(3+1)!}(x-0)^{3+1} [/mm]

Ich benötige also die vierte Ableitung:
[mm] f^{(4)}(x) [/mm] = [mm] \frac{8 sin(x) (sin^2(x) + 2)}{cos^5(x)} [/mm]

In die Restglieddarstellung eingesetzt:
= [mm] \frac{\frac{8 sin(\xi) (sin^2(\xi) + 2)}{cos^5(\xi)}}{4!}(x-0)^4 [/mm]

Das muss ich ja nun irgendwie nach [mm] 10^{-5} [/mm] abschätzen aber ich weiß nicht wie.

Ich könnte ja mal den sinus durch den cosinus ersetzen...

= [mm] \frac{\frac{8 cos(\frac{\pi}{2}-\xi) (cos^2(\frac{\pi}{2}-\xi) + 2)}{cos^5(\xi)}}{4!}(x-0)^4 [/mm]

Nun kann ich die ganzen Kosinüsse nach oben durch 1 und nach unten durch 0 abschätzen. Aber das scheint zu grob zu sein...

Bezug
                        
Bezug
Taylor - tan x abschätzen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 Fr 08.02.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]