www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Interpolation und Approximation" - Taylor-Reihen
Taylor-Reihen < Interpol.+Approx. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Taylor-Reihen: Nährungswert
Status: (Frage) beantwortet Status 
Datum: 20:45 Fr 22.04.2011
Autor: Dante19

Aufgabe
Bestimmen Sie T2(x; -1) für die Funktion f(x) = ln(x + 2) . Errechnen Sie hieraus einen
Näherungswert für ln(0;8) = ln (-1,2 + 2) und schätzen Sie den Fehler mit der Restgliedformel von Lagrange ab



Hi ich habe ein Problem ich weis nicht ob ich bei der Formel von Langrange die 0,8 oder die -1,2 benutzen muss. Obwohl ich glaube die -1,2 benutzen zu müssen. Vllt. kann ja jemand mir sagen was richtig ist.
f(x)=ln(x+2) [mm] \Rightarrow [/mm] ao=f(-1)=0
[mm] f'(x)=\bruch{1}{x+2} \Rightarrow a1=\bruch{f'(-1)}{1!}=1 [/mm]
[mm] f''(x)=-\bruch{1}{(x+2)^{2}} \Rightarrow a2=\bruch{f''(-1)}{2!}=-1/2 [/mm]

T0 (x;-1)=0
T1 (x;-1)=1
T2 (x;-1)=-1/2

T0 (x;-1)=0
T1 (x;-1)=x-1
T2 [mm] (x;-1)=(x-1)-\bruch{(x-1)^2}{2} [/mm]

Ab hier bin ich mir nicht sicher ob es richtig ist

Wie groß ist der Fehler, wenn ln (0,8) durch T2(0,8;-1)=-0,22 angenährt wird??
[mm] R2(0,8;-1)=|\bruch{f^(3)(ksi)}{3!}(0,8-(-1))| [/mm] mit -1<ksi<0,8

[mm] =\bruch{1}{3 ksi^3}(1,8)^3<\bruch{1}{3}(1,8)^3
Approximationswert auf mind. 2 Stellen geemeinsam
Taschenrechner :ln 0,8=-0,223144





        
Bezug
Taylor-Reihen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:15 Fr 22.04.2011
Autor: MathePower

Hallo Dante19,

> Bestimmen Sie T2(x; -1) für die Funktion f(x) = ln(x + 2)
> . Errechnen Sie hieraus einen
>  Näherungswert für ln(0;8) = ln (-1,2 + 2) und schätzen
> Sie den Fehler mit der Restgliedformel von Lagrange ab
>  
>
> Hi ich habe ein Problem ich weis nicht ob ich bei der
> Formel von Langrange die 0,8 oder die -1,2 benutzen muss.
> Obwohl ich glaube die -1,2 benutzen zu müssen. Vllt. kann
> ja jemand mir sagen was richtig ist.
>  f(x)=ln(x+2) [mm]\Rightarrow[/mm] ao=f(-1)=0
>  [mm]f'(x)=\bruch{1}{x+2} \Rightarrow a1=\bruch{f'(-1)}{1!}=1[/mm]
>  
> [mm]f''(x)=-\bruch{1}{(x+2)^{2}} \Rightarrow a2=\bruch{f''(-1)}{2!}=-1/2[/mm]
>  
> T0 (x;-1)=0
>  T1 (x;-1)=1
>  T2 (x;-1)=-1/2
>  
> T0 (x;-1)=0
>  T1 (x;-1)=x-1


Hier  muss es doch lauten: [mm]T_{1}\left(x;-1\right)=x\blue{+ } 1[/mm]


>  T2 [mm](x;-1)=(x-1)-\bruch{(x-1)^2}{2}[/mm]


Analog hier: [mm]T_{2}(x;-1)=(x\blue{+}1)-\bruch{(x\blue{+}1)^{2}}{2}[/mm]


>  
> Ab hier bin ich mir nicht sicher ob es richtig ist
>
> Wie groß ist der Fehler, wenn ln (0,8) durch
> T2(0,8;-1)=-0,22 angenährt wird??


Hier ist doch mit x=-1,2 zu rechnen.


>  [mm]R2(0,8;-1)=|\bruch{f^(3)(ksi)}{3!}(0,8-(-1))|[/mm] mit
> -1<ksi<0,8
>  
> [mm]=\bruch{1}{3 ksi^3}(1,8)^3<\bruch{1}{3}(1,8)^3
>  
> Approximationswert auf mind. 2 Stellen geemeinsam
>  Taschenrechner :ln 0,8=-0,223144
>  


Gruss
MathePower

Bezug
                
Bezug
Taylor-Reihen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:21 Sa 23.04.2011
Autor: Dante19

hi danke hat alles super geklappt, nachdem ich die (x-1) in (x+1) umgewandelt habe

Bezug
                
Bezug
Taylor-Reihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:23 So 22.04.2012
Autor: ZwischendenWelten

Hallo, ich habe genau dieselbe Aufgabe und ich verstehe partout nicht wie man nun das Restglied berechnen soll. Über eine kleine Hilfestellung zur Vorgehensweise wäre ich irre dankbar, weil ich nicht weiß was wohingehört, finde das alles sehr verwirrend

Bezug
                        
Bezug
Taylor-Reihen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:53 Mo 23.04.2012
Autor: leduart

Hallo
schrieb doch mal die allgemeine Form des Restgliedes hin , für [mm] f'''(\xi) [/mm] nimmst du den höchsten Wert im betrachteten Intervall um [mm] x_0 [/mm]
Was genau weist du nicht?
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]