www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Taylor-Polynom
Taylor-Polynom < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Taylor-Polynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:06 Mi 01.05.2019
Autor: hase-hh

Aufgabe
gegeben sei die Funktion  f(x) = ln(2x-2)  mit D = {x [mm] \in \IR [/mm] | x > 1}.


a) Berechnen Sie f(4).

b) Geben Sie das Taylor-Polynom 3. Grades mit dem Entwicklungspunkt [mm] x_0 [/mm] = 2 an.

c) Berechnen Sie f(4) approximativ mit Hilfe des in Teilaufgabe b) berechneten Taylor-Polynoms.

d) Bestimmen Sie für den in Teilaufgabe c) genannten Fall das Restglied des Taylor-Polynoms.



Moin Moin,

zu a)  f(4) = ln(2*4-2)  = ln(6) [mm] \approx [/mm] 1,7918

zu b)  [mm] T_3 [/mm]  = f(2) + [mm] \bruch{f ' (2)}{1!}*(x-2) +\bruch{f '' (2)}{2!}*(x-2)^2 +\bruch{f ''' (2)}{3!}*(x-2)^3 [/mm]


f(x) = ln(2*x-2)    mit   f(2) = ln(2)

f ' (x) = [mm] \bruch{1}{2x-2}*2 [/mm] = [mm] \bruch{1}{x-1} [/mm]    mit  f ' (2) = 1

f '' (x) = - [mm] \bruch{1}{(x-1)^2} [/mm]   mit  f '' (2) = - 1

f ''' (x) = [mm] \bruch{2}{(x-1)^3} [/mm]   mit  f ''' (2) = 2


  =>  [mm] T_3 [/mm] = ln(2) + [mm] \bruch{1}{1!}*(x-2) +\bruch{-1}{2!}*(x-2)^2 +\bruch{2}{3!}*(x-2)^3 [/mm]

[mm] T_3 [/mm] = ln(2) + (x-2) [mm] -\bruch{1}{2}*(x-2)^2 +\bruch{1}{3}*(x-2)^3 [/mm]

richtig?


zu c) [mm] T_3 [/mm] (4) = ln(2) + (4-2) [mm] -\bruch{1}{2}*(4-2)^2 +\bruch{1}{3}*(4-2)^3 [/mm]

  [mm] \approx [/mm] 3,3598  


Kann das richtig sein???


zu d)  ... hmm. In der Formelsammlung habe ich gefunden:


[mm] R_{n;x_0} [/mm] (x) = f(x) - [mm] T_{n;x_0} [/mm] (x)


Also...


[mm] R_{n;2} [/mm] (x) = ln(2x-2) - [mm] T_{n;2} [/mm] (x)  


reicht das so???


Danke & Gruß!





        
Bezug
Taylor-Polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 14:42 Mi 01.05.2019
Autor: fred97

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

> gegeben sei die Funktion  f(x) = ln(2x-2)  mit D = {x [mm]\in \IR[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)


> | x > 1}.
>  
>
> a) Berechnen Sie f(4).
>  
> b) Geben Sie das Taylor-Polynom 3. Grades mit dem
> Entwicklungspunkt [mm]x_0[/mm] = 2 an.
>  
> c) Berechnen Sie f(4) approximativ mit Hilfe des in
> Teilaufgabe b) berechneten Taylor-Polynoms.
>  
> d) Bestimmen Sie für den in Teilaufgabe c) geannten Fall
> das Restglied des Taylor-Polynomms.
>  
> Moin Moin,
>  
> zu a)  f(4) = ln(2*4-2)  = ln(6) [mm]\approx[/mm] 1,7918

O.K.


>
> zu b)  [mm]T_3[/mm]  = f(2) + [mm]\bruch{f ' (2)}{1!}*(x-2) +\bruch{f '' (2)}{2!}*(x-2)^2 +\bruch{f ''' (2)}{3!}*(x-2)^3[/mm]
>  
>
> f(x) = ln(2*x-2)    mit   f(2) = ln(2)
>  
> f ' (x) = [mm]\bruch{1}{2x-2}*2[/mm] = [mm]\bruch{1}{x-1}[/mm]    mit  f '
> (2) = 1
>  
> f '' (x) = - [mm]\bruch{1}{(x-1)^2}[/mm]   mit  f '' (2) = - 1
>  
> f ''' (x) = [mm]\bruch{2}{(x-1)^3}[/mm]   mit  f ''' (2) = 2
>  
>
> =>  [mm]T_3[/mm] = ln(2) + [mm]\bruch{1}{1!}*(x-2) +\bruch{-1}{2!}*(x-2)^2 +\bruch{2}{3!}*(x-2)^3[/mm]

>  
> [mm]T_3[/mm] = ln(2) + (x-2) [mm]-\bruch{1}{2}*(x-2)^2 +\bruch{1}{3}*(x-2)^3[/mm]
>  
> richtig?


Ja


>  
>
> zu c) [mm]T_3[/mm] (4) = ln(2) + (4-2) [mm]-\bruch{1}{2}*(4-2)^2 +\bruch{1}{3}*(4-2)^3[/mm]
>  
> [mm]\approx[/mm] 3,3598  
>
>
> Kann das richtig sein???


Ja


>  
>
> zu d)  ... hmm. In der Formelsammlung habe ich gefunden:
>
>
> [mm]R_{n;x_0}[/mm] (x) = f(x) - [mm]T_{n;x_0}[/mm] (x)
>
>
> Also...
>
>
> [mm]R_{n;2}[/mm] (x) = ln(2x-2) - [mm]T_{n;2}[/mm] (x)  

Das stimmt zwar, aber ich denke Du solltest eine spezielle Darstellung des Restglieds bestimmen. Welche hattet Ihr denn ?


>
>
> reicht das so???
>  
>
> Danke & Gruß!
>  
>
>
>  


Bezug
                
Bezug
Taylor-Polynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:00 Mi 01.05.2019
Autor: hase-hh

Moin,
> >
> > zu d)  ... hmm. In der Formelsammlung habe ich gefunden:
> >
> >
> > [mm]R_{n;x_0}[/mm] (x) = f(x) - [mm]T_{n;x_0}[/mm] (x)
> >
> >
> > Also...
> >
> >
> > [mm]R_{n;2}[/mm] (x) = ln(2x-2) - [mm]T_{n;2}[/mm] (x)  
>
> Das stimmt zwar, aber ich denke Du solltest eine spezielle
> Darstellung des Restglieds bestimmen. Welche hattet Ihr
> denn ?
>  

Den o.g. Ausdruck habe ich der Formelsammlung entnommen. Mehr "hatten wir" nicht.

Ich könnte höchstens [mm] T_3 [/mm]  verwenden oder [mm] T_4 [/mm] ??? Mehr fällt mir nicht ein.


???




Bezug
                        
Bezug
Taylor-Polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 19:54 Mi 01.05.2019
Autor: fred97


> Moin,
>  > >

> > > zu d)  ... hmm. In der Formelsammlung habe ich gefunden:
> > >
> > >
> > > [mm]R_{n;x_0}[/mm] (x) = f(x) - [mm]T_{n;x_0}[/mm] (x)
> > >
> > >
> > > Also...
> > >
> > >
> > > [mm]R_{n;2}[/mm] (x) = ln(2x-2) - [mm]T_{n;2}[/mm] (x)  
> >
> > Das stimmt zwar, aber ich denke Du solltest eine spezielle
> > Darstellung des Restglieds bestimmen. Welche hattet Ihr
> > denn ?
>  >  
>
> Den o.g. Ausdruck habe ich der Formelsammlung entnommen.
> Mehr "hatten wir" nicht.

Das  kann ich  kaum  glauben,  Ihr hattet das Lagrange-Restglied nicht?

Google  !


Wie stellt sich der Aufgabensteller das dann vor?

>
> Ich könnte höchstens [mm]T_3[/mm]  verwenden oder [mm]T_4[/mm] ??? Mehr
> fällt mir nicht ein.
>
>
> ???
>  
>
>  


Bezug
                                
Bezug
Taylor-Polynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:51 Do 02.05.2019
Autor: hase-hh


> > Moin,
>  >  > >

> > > > zu d)  ... hmm. In der Formelsammlung habe ich gefunden:
> > > >
> > > >
> > > > [mm]R_{n;x_0}[/mm] (x) = f(x) - [mm]T_{n;x_0}[/mm] (x)
> > > >
> > > >
> > > > Also...
> > > >
> > > >
> > > > [mm]R_{n;2}[/mm] (x) = ln(2x-2) - [mm]T_{n;2}[/mm] (x)  
> > >
> > > Das stimmt zwar, aber ich denke Du solltest eine spezielle
> > > Darstellung des Restglieds bestimmen. Welche hattet Ihr
> > > denn ?
>  >  >  
> >
> > Den o.g. Ausdruck habe ich der Formelsammlung entnommen.
> > Mehr "hatten wir" nicht.
>
> Das  kann ich  kaum  glauben,  Ihr hattet das
> Lagrange-Restglied nicht?
>  

Durch deinen Hinweis habe ich im Internet gefunden

Restglied nach Lagrange

[mm] R_n(x) [/mm] = [mm] \bruch{f^{(n+1)}(\varepsilon)}{(n+1)!}*(x-x_0)^{n+1} [/mm]

mit [mm] \varepsilon [/mm] zwischen x und [mm] x_0. [/mm]


Das hieße für die Aufgabe  

[mm] R_3(x) [/mm] = [mm] \bruch{f^{(3+1)}(\varepsilon)}{(3+1)!}*(x-2)^{3+1} [/mm]

[mm] R_3(x) [/mm] = [mm] \bruch{f^{(4)}(\varepsilon)}{(4)!}*(x-2)^{4} [/mm]

[mm] f^{(4)} [/mm] = - [mm] \bruch{6}{(x-1)^4} [/mm]

[mm] R_3(x) [/mm] = [mm] \bruch{- \bruch{6}{(\varepsilon-1)^4}}{24}*(x-2)^{4} [/mm]

[mm] R_3(x) [/mm] = - [mm] \bruch{1}{4*(\varepsilon-1)^4}*(x-2)^{4} [/mm]


richtig?

Und wenn ich nun das Restglied an der Stelle 4 bestimmen soll, müsste ich dann hier nicht  [mm] \varepsilon [/mm] = x _ [mm] x_0 [/mm]  = 4 -2 = 2  wählen?   =>  [mm] R_3(4) [/mm] = - 4 ???

Bezug
                                        
Bezug
Taylor-Polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 12:11 Do 02.05.2019
Autor: fred97


> > > Moin,
>  >  >  > >

> > > > > zu d)  ... hmm. In der Formelsammlung habe ich gefunden:
> > > > >
> > > > >
> > > > > [mm]R_{n;x_0}[/mm] (x) = f(x) - [mm]T_{n;x_0}[/mm] (x)
> > > > >
> > > > >
> > > > > Also...
> > > > >
> > > > >
> > > > > [mm]R_{n;2}[/mm] (x) = ln(2x-2) - [mm]T_{n;2}[/mm] (x)  
> > > >
> > > > Das stimmt zwar, aber ich denke Du solltest eine spezielle
> > > > Darstellung des Restglieds bestimmen. Welche hattet Ihr
> > > > denn ?
>  >  >  >  
> > >
> > > Den o.g. Ausdruck habe ich der Formelsammlung entnommen.
> > > Mehr "hatten wir" nicht.
> >
> > Das  kann ich  kaum  glauben,  Ihr hattet das
> > Lagrange-Restglied nicht?
>  >  
> Durch deinen Hinweis habe ich im Internet gefunden
>
> Restglied nach Lagrange
>
> [mm]R_n(x)[/mm] =
> [mm]\bruch{f^{(n+1)}(\varepsilon)}{(n+1)!}*(x-x_0)^{n+1}[/mm]
>  
> mit [mm]\varepsilon[/mm] zwischen x und [mm]x_0.[/mm]
>  
>
> Das hieße für die Aufgabe  
>
> [mm]R_3(x)[/mm] =
> [mm]\bruch{f^{(3+1)}(\varepsilon)}{(3+1)!}*(x-2)^{3+1}[/mm]
>  
> [mm]R_3(x)[/mm] = [mm]\bruch{f^{(4)}(\varepsilon)}{(4)!}*(x-2)^{4}[/mm]
>  
> [mm]f^{(4)}[/mm] = - [mm]\bruch{6}{(x-1)^4}[/mm]
>  
> [mm]R_3(x)[/mm] = [mm]\bruch{- \bruch{6}{(\varepsilon-1)^4}}{24}*(x-2)^{4}[/mm]
>  
> [mm]R_3(x)[/mm] = - [mm]\bruch{1}{4*(\varepsilon-1)^4}*(x-2)^{4}[/mm]
>  
>
> richtig?

Ja.


>  
> Und wenn ich nun das Restglied an der Stelle 4 bestimmen
> soll, müsste ich dann hier nicht  [mm]\varepsilon[/mm] = x _ [mm]x_0[/mm]  =
> 4 -2 = 2  wählen?   =>  [mm]R_3(4)[/mm] = - 4 ???


Nein. Du sollst doch gar nicht das Restglied an der Stelle 4 bestimmen. Das kannst Du i.a. auch gar nicht, weil Du die Stelle [mm] \epsilon [/mm] i.a. nicht kennst.




Bezug
        
Bezug
Taylor-Polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 14:49 Mi 01.05.2019
Autor: HJKweseleit


> zu c) [mm]T_3[/mm] (4) = ln(2) + (4-2) [mm]-\bruch{1}{2}*(4-2)^2 +\bruch{1}{3}*(4-2)^3[/mm]

[notok]

Du hast das Fakultätszeichen vergessen!

[mm]T_3[/mm] (4) = ln(2) + (4-2) [mm]-\bruch{1}{2}*(4-2)^2 +\bruch{1}{3\red{!}}*(4-2)^3[/mm][mm] \approx [/mm] 2,026



Bezug
                
Bezug
Taylor-Polynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:05 Mi 01.05.2019
Autor: hase-hh


>
> > zu c) [mm]T_3[/mm] (4) = ln(2) + (4-2) [mm]-\bruch{1}{2}*(4-2)^2 +\bruch{1}{3}*(4-2)^3[/mm]
>  
> [notok]
>  
> Du hast das Fakultätszeichen vergessen!
>  
> [mm]T_3[/mm] (4) = ln(2) + (4-2) [mm]-\bruch{1}{2}*(4-2)^2 +\bruch{1}{3\red{!}}*(4-2)^3[/mm][mm] \approx[/mm]
> 2,026
>  

Naja, wenn f ''' (x) = [mm] \bruch{2}{(x-1)^3} [/mm] ist, dann müsste  

... + [mm] \bruch{f '''(2)}{3!}*(4-2)^3 [/mm]  = ... + [mm] \bruch{2}{3!}*(4-2)^3 [/mm]

  = ... + [mm] \bruch{2}{6}*(4-2)^3 [/mm]   =  ... + [mm] \bruch{1}{3}+(4-2)^3 [/mm]   sein


oder nicht?




Bezug
                        
Bezug
Taylor-Polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 19:06 Mi 01.05.2019
Autor: HJKweseleit

Du hast Recht: Ich habe die 2 vergessen. Sorry!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]