www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Tanh-Fkt umstellen nach x
Tanh-Fkt umstellen nach x < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tanh-Fkt umstellen nach x: Aufgabe
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 13:14 Fr 29.04.2005
Autor: wohl80

Ich habe ein Problem mit dieser Formel

f(x) = (a * tanh(b*x-c) + e) *(f - g*x)

Sie soll nach x umgestellt werden.

Meine erste Vereinfachung schaut erstmal so aus.

f(x) = e*f + (f*a - g*x*a)* [mm] \bruch{e^{b*x-c} -e^{-(b*x-c)}}{e^{b*x-c} +e^{-(b*x-c)}} [/mm]

Jedoch fällt es mir noch schwer, hier nach x umzustellen. Das Ergebnis wird auf alle Fälle Logarithmisch sein.

Kann mir beim umstellen nach x vielleicht jemand mit Rat und Tat zur Seite stehen?

Über Hilfe würde ich mich freuen.
Viele Grüße F.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Tanh-Fkt umstellen nach x: Rückfrage
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:22 Fr 29.04.2005
Autor: Max

Hallo wohl80,

dir ein herzliches
[willkommenmr]

Leider kann ich dir nicht helfen -  auch Mathematica wollte diesen Term nicht nach $x$ auflösen! Von daher meine Frage: Woher kommt die Gleichung? Bist du sicher, dass alle Parameter benötigt werden, oder könnten evtl. paar davon $0$ sein?

Gruß Max

Bezug
                
Bezug
Tanh-Fkt umstellen nach x: Antwort
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:26 Sa 30.04.2005
Autor: wohl80

Mit Mathematica hab ich es auch schon versucht. Das verweigert selbst bei weniger Parametern die Lösung.
Weniger Parameter sind leider auch nicht möglich. Eine weitere Vereinfachung der Gleichung würde auch schon helfen.


Bezug
        
Bezug
Tanh-Fkt umstellen nach x: Mini-Korrektur
Status: (Antwort) fertig Status 
Datum: 03:54 So 01.05.2005
Autor: Loddar

Hallo wohl80!


Also zu Deinem "Mords-Ausdruck" ist mir bisher auch noch keine Lösung eingefallen.

Aber bei Deiner 1. Umformung hast Du doch glatt einen Term aus dem Ausmultiplizieren der Klammern unterschlagen:

$f(x) \ = \ [mm] \left[a*\tanh(b*x-c) + e\right] [/mm] * (f - g*x)$

$f(x) \ = \ [mm] a*f*\tanh(b*x-c) [/mm] - [mm] a*g*x*\tanh(b*x-c) [/mm] + e*f - [mm] \red{e*g*x}$ [/mm]

$f(x) \ = \ a*(f - [mm] g*x)*\tanh(b*x-c) [/mm] + e*f - [mm] \red{e*g*x}$ [/mm]

Und weiter?  [kopfkratz3]   [keineahnung]


> Das Ergebnis wird auf alle Fälle Logarithmisch sein.

Das wird wohl so sein, zumal die Umkehrfunktion folgendermaßen aussieht (auch wenn uns das erstmal nichts bringt ...) :

[mm] $f^{-1}(x) [/mm] \ = \ [mm] \ln\wurzel{\bruch{1+x}{1-y}} [/mm] \ = \ [mm] \bruch{1}{2}*\ln\left(\bruch{1+x}{1-y}\right)$ [/mm]


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]