www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Tangentialebene
Tangentialebene < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangentialebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:31 Do 23.09.2010
Autor: chryso

Aufgabe
Die Tangentialeben für den Graphen der Funktion [mm] z=f(x,y)=\wurzel{1+x²+y²} [/mm] im Punkt (2,2,3) wird durch folgende Gleichung beschrieben:
a) x+y-3z+5
b) 2x+2y-3z+1
c) 2x+2y-z-5
d) x+y-2z+2

Für die Tangentialebene benutze ich folgende Gleichung:

z=f(x0,y0) + [mm] \bruch{df}{dx}(x-x0) [/mm] + [mm] \bruch{df}{dy} [/mm] (y-y0)

die part Ableitungen ergeben:

df/dx= [mm] \bruch {x}{\wurzel{1+x²+y²}} [/mm]

df/dy= [mm] \bruch {y}{\wurzel{1+x²+y²}} [/mm]

Eingesetzt ergibt das dann:

z= 3+ 2/3 (x-2) + 2/3 (y-2)

Damit komme ich jedoch auf keins der vorgeschlagenen Ergebnisse.

Was mache ich falsch?

Vielen Dank
chryso

ps: Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Tangentialebene: Antwort
Status: (Antwort) fertig Status 
Datum: 15:48 Do 23.09.2010
Autor: reverend

Hallo chryso, erstmal ein [willkommenmr] - nach all den Jahren...

Du scheinst da in der Funktion etwas vergessen zu haben:
[mm] f(x,y)=\wurzel{1+x^\red{2}+y^\red{2}} [/mm]

Dann stimmen die partiellen Ableitungen auch, und das Ergebnis ist schließlich b).

Dazu hast Du doch alles richtig gerechnet, nur am Ende musst Du noch ein bisschen umformen.

Außerdem fehlt in den Lösungen jeweils die Angabe ...=0, sonst wärs ja keine Ebenengleichung.

Grüße
reverend



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]