www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Tangentenschnittpunkt
Tangentenschnittpunkt < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangentenschnittpunkt: Idee
Status: (Frage) beantwortet Status 
Datum: 19:33 Mi 19.03.2008
Autor: Markus110

Aufgabe
Geg. [mm] f(x)=(x^2-2)e^-^x [/mm]

Ermitteln sie eine Gleichung der Tangente [mm] t_1 [/mm] im Punkt [mm] S_1 [/mm] (-1;f(x)) und eine Gleichung der Tangente [mm] t_2 [/mm] im Punkt [mm] S_2 [/mm] (0;-2).
Berechnen Sie den Schnittpunkt der Tangenten [mm] t_1 [/mm] und [mm] t_2. [/mm]

[winken] Hallo Zusammen!

f(-1)=e

f'(x)= e^-^x [mm] (2x-x^2 [/mm] +2)

f'(-1)=e und [mm] S_1 [/mm] (-1;e) ergibt      [mm] t_1= [/mm] y=ex+2e
f'(0) =2 und [mm] S_2 [/mm] (0;-2) ergibt      [mm] t_2= [/mm] y= 2x-2

Nun den Schnittpunkt [mm] t_1=t_2 [/mm]

ex+2e=2x-2

Aber wie gehts jetzt weiter? Passt es überhaupt bis dahin?
Danke schonmal für Eure Hilfe. LG Markus





        
Bezug
Tangentenschnittpunkt: Antwort
Status: (Antwort) fertig Status 
Datum: 19:44 Mi 19.03.2008
Autor: maddhe

f(-1)=-e (minuszeichen nicht vergessen!)
f'(-1)=-e (minuszeichen nicht vergessen!)
dann ist [mm] t_1:y=-e*x-2e [/mm] und [mm] t_2:y=2x-2 [/mm]
wenn du die gleichsetzt steht da -e*x-2e=2x-2
das musst du einfach nur nach x auflösen, dann hast du die x-koordinate der Schnittpunktes - dieses setzt du entweder in [mm] t_1 [/mm] oder in [mm] t_2 [/mm] ein (da beide male das gleiche rauskommt)

Bezug
                
Bezug
Tangentenschnittpunkt: Idee
Status: (Frage) beantwortet Status 
Datum: 18:30 Do 20.03.2008
Autor: Markus110

Aufgabe
s.o.

Hallo Zusammen!

Probiere seit einer Stunde nach x aufzulösen, komm aber irgendwie nicht weiter.
Mein Lösungsansatz:

-e*x-2e=2x-2 dann +2 und +ex
-2e+2=2x+ex
-2e+2=x(2+e)    und nun würde ich gern durch (2+e) dividieren, bin aber nicht ganz sicher
                          ob das so funktioniert. Oder soll ich e (2,718...) ausschreiben
                           und dann weiterrechnen?

Hat vieleicht jemand eine Idee wie's weitergeht oder ob es überhaupt stimmt bis jetzt. Danke. LG Markus

Bezug
                        
Bezug
Tangentenschnittpunkt: Antwort
Status: (Antwort) fertig Status 
Datum: 18:38 Do 20.03.2008
Autor: abakus


> s.o.
>  Hallo Zusammen!
>  
> Probiere seit einer Stunde nach x aufzulösen, komm aber
> irgendwie nicht weiter.
>  Mein Lösungsansatz:
>  
> -e*x-2e=2x-2 dann +2 und +ex
>  -2e+2=2x+ex
> -2e+2=x(2+e)    und nun würde ich gern durch (2+e)
> dividieren

Hallo,
tu es einfach!

> , bin aber nicht ganz sicher
>                            ob das so funktioniert. Oder
> soll ich e (2,718...) ausschreiben
> und dann weiterrechnen?

Wieso willst du einen schönen genauen Wert  (e) durch einen dämlichen Näherungswert ersetzen?
Dein Ergebnis ist [mm] \bruch{-2e+2}{2+e} [/mm] (oder [mm] \bruch{2-2e}{2+e}). [/mm]
Gruß Abakus



>  
> Hat vieleicht jemand eine Idee wie's weitergeht oder ob es
> überhaupt stimmt bis jetzt. Danke. LG Markus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]