www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ganzrationale Funktionen" - Tangentengleichung bestimmen
Tangentengleichung bestimmen < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangentengleichung bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:02 Mo 01.05.2006
Autor: Mabi

Aufgabe
f(x)=1/3 [mm] x^3-2ax [/mm]

Hallo!
Ich brauch nochmal eure Hilfe...
Also, die Aufgabe lautet: "Die Tangente im Hochpunkt am Graphen von f(x) schneidet diesen Graphen in einem weiteren Punkt S. Bestimme die Koordinaten von S." Der Hochpunkt von f(x) ist H(-2/  [mm] 16\3) [/mm] <-- sechzehn drittel und nicht 16

Die Tangentenform lautet ja t(x)=mx+b, dh ich kann doch durch die erste Ableitung an der Stelle -2 die Steigung m der Tangenten ausrechnen und durch einsetzen der Hochpunktkoordinaten den y-Achsenabschnitt b berechnen, oder?

Meine Tangentengleichung würde dann [mm] t(x)=4\3 [/mm] (vier drittel und nicht 4) lauten. Aber wenn ich damit weiterrechne, bekomme ich nichts vernünftiges raus... Kann mir jemand von euch helfen?

Mfg, Mabi

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Tangentengleichung bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:13 Mo 01.05.2006
Autor: hase-hh

moin,

im prinzip genau so. doch zunächst eine frage, wie lautet deine funktion?


[mm] f(x)=1/3x^3 [/mm] - 2ax   beschreibt ja eine funktionsschar, das wäre ja auch nicht weiter tragisch, allerdings müßte ich dann das a selnbstverständlich mit berücksichtigen.


[mm] f'(x)=x^2 [/mm] -2a

0 = [mm] x^2 [/mm] - 2a

x1,2 = [mm] \pm \wurzel{2a} [/mm]

usw.

gruss
wolfgang




Bezug
                
Bezug
Tangentengleichung bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:21 Mo 01.05.2006
Autor: Mabi

Oh, tut mir Leid... Hab die Aufgabe falsch abgetippt... Es handelte sich nämlich um eine Funktionenschar fa(x), aber hier geht es um die konkrete funktion f2(x), Also lautet die Funktionsvorschrift dann: [mm] f(x)=1/3x^3-4x [/mm]

Sorry, bin in der zeile verrutscht...


Bezug
                        
Bezug
Tangentengleichung bestimmen: Hinweis
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:19 Mo 01.05.2006
Autor: Desiderius

Tach! Das ist mein erster Post also bitte nicht böse sein, wenn ich was falsch mache.

Also erstens. Die Tangentengleichung ist doch x= [mm] \bruch{16}{3} [/mm] und nicht  [mm] \bruch{4}{3}, [/mm] wie du gesagt hast.
Da man den weiteren Schnittpunkt dann nur angeben muss und nicht ausrechnen muss, würde ich nun folgende Funktion in den Taschenrechner eingeben f(x)= [mm] \bruch{1}{3}x^{3}-4x- \bruch{16}{3} [/mm] und würde dann einfach nach einer einer Nullstelle suchen. Die dann bei x=4 liegt.
Ich wüsste nicht wie man das genau berechnen könnte, aber da ja auch nur verlangt wird, dass man diesen Punkt ermittelt, müsste das meiner Meinung nach reichen.

Ich hoffe ich konnte helfen.

mfg

Bezug
                                
Bezug
Tangentengleichung bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:43 Mo 01.05.2006
Autor: hase-hh

ok,

jetzt macht die aufgabe sinn.

y=mx + b  

m=f'(-2)=0 (logisch!)

f(-2)=y=16/3  => b= 16/3 =>

y= 16/3


Schnittpunktberechung

f(x)=y

[mm] (1/3)x^3 [/mm] - 4x = 16/3  

[mm] x^3 [/mm] - 12x = 16

eine Lsg  x=-2  (s.o.)
eine Lsg x=-4  

gruss
wolfgang









Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]