www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Abiturvorbereitung" - Tangentengleichung
Tangentengleichung < Abivorbereitung < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Abiturvorbereitung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangentengleichung: Korrektur
Status: (Frage) beantwortet Status 
Datum: 19:57 Mo 23.04.2012
Autor: karina21

Aufgabe
Gegeben sind ein Kreis k: x² + y² - 16x + 8y +40 = 0 und ein Punkt P (-2/6).
a) Ermittle die Gleichungen der Tangenten, die man von Punkt P an den Kreis legen kann.

Ich habe M und r berechnet und erhalte hierfür für M (8/-4) und r ist die Wurzel aus 40. Mithilfe der Berührbedingung habe ich schließlich noch k berechnet und erhalte +/- Wurzel aus 2. Stimmen meine Rechnungen und meine Vorgangsweise bis jetzt ?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Tangentengleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:20 Mo 23.04.2012
Autor: MathePower

Hallo karina21,

> Gegeben sind ein Kreis k: x² + y² - 16x + 8y +40 = 0 und
> ein Punkt P (-2/6).
> a) Ermittle die Gleichungen der Tangenten, die man von
> Punkt P an den Kreis legen kann.
>  Ich habe M und r berechnet und erhalte hierfür für M
> (8/-4) und r ist die Wurzel aus 40. Mithilfe der


Bis hierher ist alles richtig. [ok]


> Berührbedingung habe ich schließlich noch k berechnet und
> erhalte +/- Wurzel aus 2. Stimmen meine Rechnungen und


Ich weiss hier nicht, auf welchem Wege Du das k ermittelt.

Poste dazu die Rechenschritte.


> meine Vorgangsweise bis jetzt ?
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.  


Gruss
MathePower

Bezug
                
Bezug
Tangentengleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:24 Mo 23.04.2012
Autor: karina21

Das k ermittle ich mithilfe der Berührbedingung : [mm] (xm*k-ym+d)^2=r^2*(k^2+1). [/mm] Habe dann eingesetzt : [mm] (8k+4+6+2k)^2=40(k^2+1). [/mm] Wenn ich die Klammern auflöse erhalte ich für [mm] k^2=2. [/mm]


Bezug
                        
Bezug
Tangentengleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:00 Mo 23.04.2012
Autor: MathePower

Hallo karina21,

> Das k ermittle ich mithilfe der Berührbedingung :
> [mm](xm*k-ym+d)^2=r^2*(k^2+1).[/mm] Habe dann eingesetzt :
> [mm](8k+4+6+2k)^2=40(k^2+1).[/mm] Wenn ich die Klammern auflöse
> erhalte ich für [mm]k^2=2.[/mm]
>  


Ich erhalte für die obige Gleichung andere Lösungen.

Rechne das mal vor, wie Du auf [mm]k^2=2[/mm]  kommst.


Gruss
MathePower

Bezug
                                
Bezug
Tangentengleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:36 Di 24.04.2012
Autor: karina21

Nach mehrmaligem Nachrechnen erhalte ich für k schliesslich 1 und -1. Ich bin folgend vorgegangen : [mm] (8k+4+6+2k)^2=40k^2+40 [/mm]
vereinfachen : [mm] (10k+10)^2=40k^2+40 [/mm]
= [mm] 100k^2+100=40k^2+40 [/mm]
= [mm] 60k^2=-60 [/mm]
k=+/- 1
Könnte dieses Ergebnis stimmen?

Bezug
                                        
Bezug
Tangentengleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:20 Di 24.04.2012
Autor: leduart

Hallo
1. schon dass [mm] k^2 [/mm] negativ ist, es also nicht existiert, sagt dir du musst falsch gerechnet haben!
2. [mm] (a+b)^2 \ne a^2+b^2 [/mm]  aber so hast du gerechnet,
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Abiturvorbereitung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]