www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Tangentengleichung
Tangentengleichung < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangentengleichung: Tipp
Status: (Frage) beantwortet Status 
Datum: 16:56 Do 15.01.2009
Autor: AbraxasRishi

Aufgabe
[mm] \frac{x*p_1}{a^2}-\frac{y*p_2}{b^2}=1 [/mm]

Hallo!

Ich versuche  gerade diese Formel mithilfe der Ableitung herzuleiten, habe aber einige Probleme. Könnte mir bitte jemand helfen?

Meine Ansätze sind:

[mm]\frac{x^2}{a^2}-\frac{y^2}{b^2}=1[/mm]

[mm]y'=\frac{xb^2}{ya^2}\qquad t:y=\frac{xb^2}{ya^2}x+z\qquad z=p_2-\frac{p_1^2b^2}{p_2a^2}\qquad ya^2p_2=p_1b^2x+a^2p_2^2-p_1^2b^2=\frac{p_1x}{a^2}-\frac{p_2y}{b^2}=\frac{-p_2^2}{b^2}+\frac{p_1^2}{a^2} [/mm]

Wenn meine Formel stimmen würde musste doch [mm] \frac{-p_2^2}{b^2}+\frac{p_1^2}{a^2} [/mm] =1 sein. Was mache ich falsch?

Vielen Dank !

Gruß

Angelika

        
Bezug
Tangentengleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:10 Do 15.01.2009
Autor: Al-Chwarizmi

hallo Angelika


> [mm]\frac{x*p_1}{a^2}-\frac{y*p_2}{b^2}=1[/mm]

> Ich versuche  gerade diese Formel mithilfe der Ableitung
> herzuleiten, habe aber einige Probleme. Könnte mir bitte
> jemand helfen?
>  
> Meine Ansätze sind:
>  
> [mm]\frac{x^2}{a^2}-\frac{y^2}{b^2}=1[/mm]
>  
> [mm]y'=\frac{xb^2}{ya^2}\qquad t:p_2=\frac{xb^2}{ya^2}x+z\qquad z=p_2-\frac{p_1^2b^2}{p_2a^2}\qquad ya^2p_2=p_1b^2x+a^2p_2^2-p_1^2b^2=\frac{p_1x}{a^2}-\frac{p_2y}{b^2}=\frac{-p_2^2}{b^2}+\frac{p_1^2}{a^2}[/mm]
>  
> Wenn meine Formel stimmen würde musste doch
> [mm]\frac{-p_2^2}{b^2}+\frac{p_1^2}{a^2}[/mm] =1 sein. Was mache ich
> falsch?


Wahrscheinlich nichts - ausser dass du möglicher-
weise ein kleines Problem hast mit der genauen
Bedeutung der Bezeichnungen.

Der Punkt [mm] P(p_1/p_2) [/mm] soll doch wohl der Punkt
auf der Hyperbel sein, in welchem die Tangente
angelegt wird. Dann ist klar, dass die Koordinaten
von P die Hyperbelgleichung auch erfüllen müssen.

LG

Bezug
                
Bezug
Tangentengleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:26 Do 15.01.2009
Autor: AbraxasRishi

Stimmt! Das habe ich total übersehen!Danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]