www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Tangentenbestimmung !
Tangentenbestimmung ! < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangentenbestimmung !: Frage !
Status: (Frage) beantwortet Status 
Datum: 11:10 Sa 24.09.2005
Autor: steph

Hallo zusammen,

ich hätte eine Frage und zwar gegeben ist die Funktion

[mm] f(x)=1/4x^2-1,25x+1 [/mm] mit Punkt (4/y0)

Ich soll die Tangente bestimmen.

Also ich habe "allgemein" die Steigung berechnet und dort kommt bei mir als Steigung m raus

0,5 [mm] x_{0}-1,25 [/mm]

Die Tangentengleichung in Punkt P lautet dann P (4/0)

Setzte ich es für m ein also m(4)=0,75

Um zur Tangentenfunktion zu kommen, rechne ich dann:

t(x)=mx+t
t(x)=0,75x+t
t(4)=0
3x+t=0
t=-3

3x-3=0
das kommt bei mir raus, aber es ´stimmt, wenn man es überprüft nicht.

Kann mir einer weiterhelfen ???

Besten DANK !!!

gruss
steph

        
Bezug
Tangentenbestimmung !: Bis auf den letzten Schritt ..
Status: (Antwort) fertig Status 
Datum: 11:18 Sa 24.09.2005
Autor: Loddar

Hallo steph!


Du hast fast alles richtig gemacht! Nur im allerletzten Schritt hast Du falsch eingesetzt.

Du hattest doch als Tangentensteigung ermittelt: [mm] $m_t [/mm] \ = \ 0,75$


Und genau das musst Du dann auch einsetzen in die Tangentengleichung:

$t(x) \ = \ [mm] \red{0,75}*x [/mm] - 3$


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]