www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Tangenten an eine Funktion
Tangenten an eine Funktion < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangenten an eine Funktion: Frage
Status: (Frage) beantwortet Status 
Datum: 12:14 Di 15.02.2005
Autor: Sonnen_scheinly

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ich benötige nur einen kleinen Denkanstoß, wie ich eine Tangente an eine Funktion von einem Punkt außerhalb der Funktion erstellen kann?

Ich weiß, dass ich irgendwie mit parametern wie m1 und x1 sowie y1 arbeiten musste, aber wie , dass finde ich leider nicht mehr.
Danke für eure Hilfe...

        
Bezug
Tangenten an eine Funktion: Denkanstoß
Status: (Antwort) fertig Status 
Datum: 12:28 Di 15.02.2005
Autor: Loddar

Hallo Juliane!

[willkommenmr] !!


Da es sich ja um eine Tangente handeln soll, müssen Tangentensteigung [mm] $m_t$ [/mm] sowie Steigung der Funktion $f(x)$ übereinstimmen.

Die Steigung der Funktion erhalten wir ja durch die 1. Ableitung: [mm] $f'(x_0)$. [/mm]

Zudem haben wir einen Punkte $P \ ( \ [mm] x_P [/mm] \ [mm] \left| \ y_P \ )$ außerhalb der Funktion gegeben. Damit ergibt sich Deine Tangentengleichung aus der [b]Punkt-Steigungs-Form[/b] (siehe auch in der MatheBank unter [[Geradengleichung]]) : $m_t \ = \ f'(x_0) \ = \ \bruch{y - y_P}{x - x_P}$ Daraus kannst Du dann die Tangentengleichung in der Normalform ermitteln: $t(x) \ = \ m_t*x + n$ Nun alles klar(er) ? Sonst frage nochmal nach ... Loddar [/mm]

Bezug
                
Bezug
Tangenten an eine Funktion: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:03 Di 15.02.2005
Autor: Sonnen_scheinly

ich versuchs jetzt mal und bei auftretenden Fragen meld ich mich...

Bezug
                
Bezug
Tangenten an eine Funktion: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 15:48 Do 17.02.2005
Autor: Sonnen_scheinly

Hallo, ich habe meine Aufgabe jetzt mal durchgerechnet. Ich erhalte auch ein Ergebnis, aber bin mir doch sehr unsicher ob es wirklich stimmt.

Aufgabe:

[mm] f_a(x)=-\bruch{3x}{a+x^2} [/mm] für [mm] a\not=0 [/mm]

Genau eine Tangente an den Graphen der Funktion im Punkt [mm] P_a (\wurzel{2a}/f_a(\wurzel{2a})) [/mm] schneidet die Abszissenachse im Punkt Q(8;0). Berechnen Sie den zugehörigen Wert a.

Ich habe dann zuerst [mm] f_a(\wurzel{2a}) [/mm] ausgerechnet und komme auf    [mm] \bruch{-\wurzel{2a}}{a} [/mm] . Dann habe ich mithilfe der Quotientenregel die erste Ableitung gebildet: [mm] f'(x)=\bruch{-3a+3x^2}{(a+x^2)^2} [/mm]

Dann habe ich den Punkt [mm] P_a [/mm] in die Formel für m eingesetzt: [mm] m_t= \bruch{y-f_a(\wurzel{2a}}{x-\wurzel{2a}} [/mm]

Dann hab ich das in die Punkt-Steigungs-Form eingesetzt. danach hab ich den Punkt Q in t(x) eingesetzt. t(8)= [mm] \bruch{\wurzel{2a}}{8-\wurzel{2a}+a} [/mm] *8
ich hab mir überlegt, dass das n ja 0 sein müsste wenn es die x-Achse schneidet.
Dann hab ich gegrübelt wie ich a berechnen könnte und hab einfach t(8) gleich 0 gesetzt.  dabei kommt raus a=0.

Wäre nett, wenn du dir das mal anschauen könntest...
danke!

    


Bezug
                        
Bezug
Tangenten an eine Funktion: t(x)
Status: (Antwort) fertig Status 
Datum: 16:18 Do 17.02.2005
Autor: Hexe

Warum nimmst du nicht m=f´( [mm] \wurzel{2a}) [/mm] ??  
dann setzt du 0=m*8+d  rechnest d aus und kommst  durch einsetzen von [mm] (\wurzel{2a},f(\wurzel{2a}) [/mm] ) in t auf den Wert für a. Und ich hab nicht 0 raus

Bezug
                                
Bezug
Tangenten an eine Funktion: Lösung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:22 Do 17.02.2005
Autor: Sonnen_scheinly

danke, für den Hinweis..

jetzt hab ich a=2 raus...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]