www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Tangente von ln(x+1)
Tangente von ln(x+1) < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangente von ln(x+1): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:24 Di 18.10.2005
Autor: philipp-100


Hallo,

ich suche das obenstehende.
f(x)=ln(x+1)
f'(x)=1/(x+1)

y=m*x+b
b fällt weg weil die Tangente durch 0 gehen soll

y=m*x

y=x/(x+1)

um x rauszubekommen habe ich das dann gleich der funktion f(x)=ln(x+1)
gesetzt.

ln(x+1)=x/(x+1)
und dann komm ich nicht mehr weiter.
Beim ausprobieren habe ich 0 für x rausbekommen.
In der Klausur soll ich aber nicht ausprobieren und deswegen muss ich wissen wie man das rechnen.
Wie kann ich x genau berechnen?

wenn für x 0 dann wäre das Ergebniss:
y=x

Hoffe jemand kann mir weiterhelfen.
Gruß

Philipp


        
Bezug
Tangente von ln(x+1): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:09 Di 18.10.2005
Autor: cologne

hallo philipp,

du suchst also die tangente an der funktion ln(x+1), die durch den koordinatenursprung (0|0) geht ...

> f(x)=ln(x+1)
> f'(x)=1/(x+1)

[ok]

> y=m*x+b
> b fällt weg weil die Tangente durch 0 gehen soll
> y=m*x

[ok]

> y=x/(x+1)
>
> um x rauszubekommen habe ich das dann gleich der funktion
> f(x)=ln(x+1)
> gesetzt.

entschuldige bitte, ich bin bei der bearbeitung unterbrochen worden. bis hierher sieht erstmal alles okay aus, ich geb mal die frage wieder frei ... sorry

vile grüße gerd

Bezug
        
Bezug
Tangente von ln(x+1): Antwort
Status: (Antwort) fertig Status 
Datum: 18:32 Di 18.10.2005
Autor: Stefan

Hallo!

Leider ist die Aufgabenstellung nicht ganz klar. Ich vermute mal, dass du diejenige Tangente bestimmen sollst, die durch den Punkt $(0/0)$ geht. Oder wie?

Naja, aber $(0/0)$ ist ja wegen [mm] $\ln(0+1)=\ln(1)=0$ [/mm] auch Teil des Graphen, also ist die Tangente im Punkt $(0/0)$ zu bestimmen.

Wie du selber schon meintest, wird diese durch

$y = f'(0) [mm] \cdot [/mm] x +0$

gegeben. Nun ist $f'(x) = [mm] \frac{1}{x+1}$, [/mm] also: $f'(0)=1$.

Wir haben also, wie du richtig meintest:

$y= x$.

Was war hier jetzt zu raten? [haee]

Oder wie lautete die genaue Aufgabenstellung?

Oder war diejenige Tangente in einem Punkt $P(x/0)$ zu bestimmen und man musste erst noch $x$ bestimmen?

In diesem Fall wäre ja

[mm] $\ln(x+1)=0$ [/mm]

zu lösen.

Jetzt nimmst du auf beiden Seiten "e hoch" und erhältst:

$x+1 [mm] =e^{\ln(x+1)}= e^0 [/mm] =1$,

also: $x=0$.

Liebe Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]