www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Sonstiges" - Tangente an f'
Tangente an f' < Sonstiges < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangente an f': Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:04 So 19.08.2007
Autor: Daniel_Basiry

Aufgabe
Vom Punkt P(4/-12) aus werden Tangenten an den Graphen von f: f(x)=1/x gelegt. Ermittle die Berührpunkte mit dem Graphen von f'.

Da ich leider letztes Jahr nicht so reecht aufgepasst habe, weiß ich jetzt nicht so richtig wie ich diese Aufgabe rechnen soll. :(  

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Tangente an f': Antwort
Status: (Antwort) fertig Status 
Datum: 18:41 So 19.08.2007
Autor: M.Rex

Hallo.

Da du eine Tangente suchst, suchst du ja eine Gerade der Form t(x)=mx+b, wobei du das m und das b bestimmen sollst.

Was weiss ich jetzt über die Tangente?

1) P(4/-12) soll auf der Geraden liegen, also soll gelten:
t(4)=-12

Also: -12=m*4+b [mm] \gdw [/mm] b=-12-4m

2) Am Berührpunkt [mm] B(x_{b}/f(x_{b})) [/mm] (leider unbekannt), hat die Tangente die gleiche Steigung wie der Graph der Funktion f. Dessen Steigung kannst du ja mit Hilfe der Ableitung bestimmen, es gilt also [mm] m=f'(x_{b}). [/mm]

Somit gilt für die Tangente:

[mm] t(x)=f'(x_{b})*x+\underbrace{(-12-4m)}_{b}=f'(x_{b})*x+(-12-4f'(x_{b})) [/mm]

Jetzt bleibt noch, den Berührpunkt, und damit der konkrete Wert für [mm] f'(x_{b}) [/mm] zu bestimmen. Hier soll ja gelten:

t(x)=f(x), also

[mm] \bruch{1}{x}=\underbrace{-\bruch{1}{x²}}_{f'(x)}*x+(-12+\bruch{4}{x²}) [/mm]

Daraus berechnest du jetzt dein [mm] x_{b} [/mm] des Berührpunktes, und dann [mm] f(x_{b}) [/mm] und [mm] f'(x_{b}). [/mm] Mit dem Ergebnis von [mm] f'(x_{b}) [/mm] bestimmst du dann dein m und b der gesuchten Tangente.

Marius

Bezug
                
Bezug
Tangente an f': Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:59 So 19.08.2007
Autor: Daniel_Basiry

Vielen dank für die schnelle und ausführliche erklärung.^^

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]