www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Tangens
Tangens < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangens: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 22:46 Fr 06.11.2009
Autor: student87

Aufgabe
Es sei [mm] x\in (0;\bruch{\pi}{2}). [/mm] Mit Hilfe geeigneter rechwinkliger Dreiecke bestimme man die Werte der drei anderen Funktionen (cot, cos, sin).
tan [mm] (x)=\bruch{12}{5} [/mm]

N´abend,
so, ich hab mir zu der Aufgabe erst mal eine Zeichnung gemacht.
[Dateianhang nicht öffentlich]
Mit Hilfe dieser Zeichnung soll ich jetzt angeblich über den Satz des Phytagoras oder anderer Formeln die im Dreieck gelten, auf die Lösung kommen, aber wie??? Ich könnte die Werte für die anderen Winkelfunktionen ja einfach mit dem Taschenrechner ausrechnen, dann kommt man z.B. auf sin(x) = [mm] \bruch{12}{13} [/mm] aber das ist halt nicht das was der Prof. sehen möchte. Hat jemand eine Idee?
Danke im voraus
markus

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
        
Bezug
Tangens: Antwort
Status: (Antwort) fertig Status 
Datum: 22:57 Fr 06.11.2009
Autor: abakus


> Es sei [mm]x\in (0;\bruch{\pi}{2}).[/mm] Mit Hilfe geeigneter
> rechwinkliger Dreiecke bestimme man die Werte der drei
> anderen Funktionen (cot, cos, sin).
>  tan [mm](x)=\bruch{12}{5}[/mm]
>  N´abend,
>  so, ich hab mir zu der Aufgabe erst mal eine Zeichnung
> gemacht.
>  [Dateianhang nicht öffentlich]
>  Mit Hilfe dieser Zeichnung soll ich jetzt angeblich über
> den Satz des Phytagoras oder anderer Formeln die im Dreieck
> gelten, auf die Lösung kommen, aber wie??? Ich könnte die
> Werte für die anderen Winkelfunktionen ja einfach mit dem
> Taschenrechner ausrechnen, dann kommt man z.B. auf sin(x) =
> [mm]\bruch{12}{13}[/mm] aber das ist halt nicht das was der Prof.
> sehen möchte. Hat jemand eine Idee?
>  Danke im voraus
>  markus

Hallo,
dein großes rechtwinkliges Dreieck hat die Kathetenlängen 2,4 und 1.
Daraus kannst du auch die Hypotenuse berechnen (die ist 2,6).
Das kleine Dreieck mit sin und cos ist zu diesem ähnlich und hat nur die Hypotenusenlänge 1...
Gruß Abakus


Bezug
                
Bezug
Tangens: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:18 Fr 06.11.2009
Autor: student87

Mathe kann so einfach sein wenn man nur auf die richtigen Ansätze kommt ;-)
Danke für die schnelle Hilfe!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]