www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Trigonometrische Funktionen" - Tan-Umformungen?
Tan-Umformungen? < Trigonometr. Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tan-Umformungen?: Tipp wäre nett!
Status: (Frage) beantwortet Status 
Datum: 14:52 Do 27.08.2009
Autor: Fawkes2009

Aufgabe
Man zeige, dass tan(x + y) = [mm] \bruch{tan x + tan y}{1-tanx tany} [/mm]

für x, y [mm] \in [/mm] ] − [mm] \pi4 [/mm] , [mm] \pi4 [/mm] [ gilt.




Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ich kann mir leider keinen lösungsweg zum Lösen dieser Aufgabe vorstellen. Und selbst wenn ich hier einfach umformen soll: außer sin²x + cos²x = 1 kenne ich keine additionstheoreme für den tan. Das Theorem hilft mir nur nicht wirklich weiter.
Aber soll man hier einfach nur umformen? Und was soll das mit dem [mm] \pi4 [/mm] ?

Wäre für jeden Tipp dankbar!

        
Bezug
Tan-Umformungen?: Antwort
Status: (Antwort) fertig Status 
Datum: 15:06 Do 27.08.2009
Autor: MatheOldie


> Man zeige, dass tan(x + y) = [mm]\bruch{tan x + tan y}{1-tanx tany}[/mm]
>  
> für x, y [mm]\in[/mm] ] − [mm]\pi4[/mm] , [mm]\pi4[/mm] [ gilt.

> ... außer sin²x + cos²x = 1 kenne ich keine additionstheoreme für den tan. Das Theorem hilft mir nur nicht wirklich weiter. Aber soll man hier einfach nur umformen? Und was soll das mit dem [mm]\pi4[/mm] ?

Das soll doch sicher [mm]\frac{-\pi}{4}[/mm] und [mm]\frac{\pi}{4}[/mm] heißen, oder? Überlege mal, für welche Werte tan definiert ist.

Du kommst vielleicht weiter, wenn du die Definition von tan durch sin und cos betrachtest und daran denkst ,dass es für sin, cos viele Additionstheoreme gibt.

Gruß, MatheOldie

Bezug
                
Bezug
Tan-Umformungen?: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 12:41 So 30.08.2009
Autor: Fawkes2009

Sorry das kapier ich überhaupt nicht, der tan ist bis die Nullstellen des Cos ,da [mm] \bruch{sin(x)}{cos(x} [/mm] = tanx ist und cosx nicht null werden sollte.

Ich bin jetzt bei der Gleichung von links nach rechts vorgegangen - Und wenn tan(x+y) = [mm] \bruch{sin(x + y)}{cos(x+y} [/mm] ist dann habe ich durch Umformen:


[mm] \bruch{sinx*cosy+siny*cosx}{cosx*cosy - sinx*siny} [/mm]

und nun?  um die 4 Produkte in Zähler und Nenner umzuformen fällt mir kein passendes Theorem zu ein. Oder habe ich etwas falsch verstanden?
hoffe auf eure tipps

Bezug
                        
Bezug
Tan-Umformungen?: Antwort
Status: (Antwort) fertig Status 
Datum: 12:47 So 30.08.2009
Autor: MatheOldie

Schau dir jetzt mal für Zähler und Nenner die Additionstheoreme für sin(x+y) an ...

Zum Def.bereich: Wenn x und y jeweils Pi/4 sind, dann erreichst du eine Def.lücke von tan(x+y).

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]