www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionalanalysis" - T mit Integral versehen
T mit Integral versehen < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

T mit Integral versehen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:46 Fr 10.10.2014
Autor: Schachtel5

Hallo
es geht um eine Passage in einem handgeschriebenem Skript, welche ich nicht verstehe. Ich schreibe diese mal raus. Wenn da Informationen fehlen entschuldige ich mich im Voraus und liefere sie dann nach.

Die Passage:
Betrachte [mm] T=\{z\in \mathbb{C}:|z|=1\} [/mm] versehen mit dem Lebesgueintegral [mm] \integral_{T}{f(x) dz}:=\integral_{0}^{1}{f(e^{2it\pi}) dt}. [/mm]
Dann ist [mm] e_n(z):=z^n (=e^{2int\pi} [/mm] für [mm] z=e^{2it\pi}) [/mm] eine Orthonormalbasis von [mm] L^2(\mathbb{Z}) [/mm] und wir erhalten einen Homomorphismus [mm] F:l^2(\mathbb{Z})\to L^2(\mathbb{Z}) [/mm] mit [mm] F\delta_n=e_n, [/mm] wobei [mm] \{\delta_n:n\in \mathbb{Z}\} [/mm] die kanonische ONB von [mm] l^2(\mathbb{Z}) [/mm] bezeichnet.

Ich verstehe hier einiges nicht:
1.Inwiefern wird T mit dem obigen Integral ausgestattet? Macht ja keinen Sinn für so ein f eine Funktion f(z)=z mit [mm] z\in [/mm] T einzusetzen. Oder sagt man das nur, um das Integral  [mm] \integral_{T}{f(x) dz}:=\integral_{0}^{1}{f(e^{2it\pi}) dt} [/mm] zu betrachten?. Also was meint hier, dass [mm] T=\{z\in \mathbb{C}:|z|=1\} [/mm] mit dem Lebesgueintegral
[mm] \integral_{T}{f(x) dz}:=\integral_{0}^{1}{f(e^{2it\pi}) dt} [/mm] versehen ist?

Der Rest ist mir dann deswegen auch unklar.
2. Woran sieht man hier, dass [mm] e_n(z):=z^n (=e^{2int\pi} [/mm] für [mm] z=e^{2it\pi}) [/mm] eine Orthonormalbasis von [mm] L^2(\mathbb{Z}) [/mm] ist?

Gruß

        
Bezug
T mit Integral versehen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:35 Fr 10.10.2014
Autor: andyv

Hallo,

ad 1: Es soll hier lediglich erklärt werden, wie man über den 1-Torus T integriert, die Definition ist in gewisser Weise sehr natürlich: Mit Hilfe der bijektiven Funktion $g: [0,1)  [mm] \to [/mm] T, \ t [mm] \mapsto \exp(2\pi [/mm] i t)$ definiere den so genannten push forward [mm] $\mu_H:=\mu \circ g^{-1}$, [/mm] wobei [mm] $\mu$ [/mm] das Lebesgue-Maß auf [0,1) ist.
Dann gilt: $ [mm] \integral_{T}{f(z) dz}:=\integral_{0}^{1}{f(e^{2it\pi}) d\mu(t)}=\int_{T}f(x) \mathrm{d}\mu_H(x)$ [/mm] für [mm] $\mu_H$-integrierbare [/mm] Funktionen $f: T [mm] \to \IC$ [/mm]
(Man nennt [mm] $\mu_H$ [/mm] das Haar-Maß.)

ad 2: Könnte aus der Fourier-Theorie bekannt sein, ansonsten berechne [mm] $_{L^2(T)}=\integral_{T}{z^n z^m dz}$. [/mm]

Liebe Grüße

Bezug
                
Bezug
T mit Integral versehen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:30 Sa 11.10.2014
Autor: Marcel

Hallo andyv,

> Hallo,
>  
> ad 1: Es soll hier lediglich erklärt werden, wie man über
> den 1-Torus T integriert, die Definition ist in gewisser
> Weise sehr natürlich: Mit Hilfe der bijektiven Funktion [mm]g: [0,1) \to T, \ t \mapsto \exp(2\pi i t)[/mm]
> definiere den so genannten push forward [mm]\mu_H:=\mu \circ g^{-1}[/mm],
> wobei [mm]\mu[/mm] das Lebesgue-Maß auf [0,1) ist.
>  Dann gilt: [mm]\integral_{T}{f(z) dz}:=\integral_{0}^{1}{f(e^{2it\pi}) d\mu(t)}=\int_{T}f(x) \mathrm{d}\mu_H(x)[/mm]
> für [mm]\mu_H[/mm]-integrierbare Funktionen [mm]f: T \to \IC[/mm]
> (Man nennt [mm]\mu_H[/mm] das Haar-Maß.)

aber er hat von der Sprechweise her recht: Es wird doch nicht [mm] "$T\,$ [/mm] mit dem
Integral versehen."

Sondern man versieht die Menge der entsprechend [mm] $\mu_H$-integrierbaren [/mm] Funktionen
$f [mm] \colon [/mm] T [mm] \to \IC$ [/mm] durch ...

Gruß,
  Marcel

Bezug
                        
Bezug
T mit Integral versehen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:30 Sa 11.10.2014
Autor: Schachtel5

Danke euch, ich hab das dann jetzt verstanden.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]