www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Systeme von Ungleichungen
Systeme von Ungleichungen < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Systeme von Ungleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:49 Mi 14.07.2010
Autor: fabe_sen

Aufgabe
Bestimmen sie die Lösungsmengen der folgenden Systeme von Ungleichungen:

2 < [mm] \bruch{5x+1}{2x-1} [/mm] < 5

Wie löse ich solche Systeme? Betrachte ich einmal den Bruch größer 2, dann den Bruch kleiner 5, führe dabei je zwei Fallunterscheidungen (x>0 und x<0) durch und ermittel dann die geschnittene Lösungsmenge?

Danke Fabe_sen

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Systeme von Ungleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:03 Mi 14.07.2010
Autor: Al-Chwarizmi


> Bestimmen sie die Lösungsmengen der folgenden Systeme von
> Ungleichungen:
>  
> 2 < [mm]\bruch{5x+1}{2x-1}[/mm] < 5
>  
> Wie löse ich solche Systeme? Betrachte ich einmal den
> Bruch größer 2, dann den Bruch kleiner 5, führe dabei je
> zwei Fallunterscheidungen (x>0 und x<0) durch und ermittel
> dann die geschnittene Lösungsmenge?
>  
> Danke Fabe_sen


Hallo Fabe-sen,

da der Wert des Bruches zwischen 2 und 5 liegen soll,
muss er jedenfalls positiv sein. Ein Bruch wird genau
dann positiv, wenn Zähler und Nenner entweder beide
positiv oder beide negativ sind. Überleg dir also zuerst,
für welche x-Werte dies der Fall ist. Dann kannst du für
die verbliebenen x-Werte die beiden Ungleichungen
auflösen - dabei musst du beim Umformen der Unglei-
chung jeweils genau auf das Vorzeichen des Nenners
[mm] 2\,x-1 [/mm]  aufpassen.

Übrigens: die Fallunterscheidung x>0 oder x<0 macht
hier eigentlich keinen Sinn !


LG    Al-Chw.

Bezug
                
Bezug
Systeme von Ungleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:58 Mi 14.07.2010
Autor: fabe_sen

Danke zunächst mal für deine Antwort.
So wie du mir das beschrieben hast, schaue ich also zuerst nach den Lösungsmengen für:
5x+1<0 [mm] \cup [/mm] 2x-1<0   [mm] \Rightarrow x<-\bruch{1}{5} [/mm]  und
5x+1>0 [mm] \cup [/mm] 2x-1>0   [mm] \Rightarrow [/mm] x> [mm] \bruch{1}{2} [/mm]

Leider befürchte ich das dies schon falsch war bzw. wie geht es dann weiter?

Bezug
                        
Bezug
Systeme von Ungleichungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:28 Mi 14.07.2010
Autor: fabe_sen

Also ich habe jetzt den bruch einmal größer 2 und einmal kleiner 5 betrachtet und erhalte dann als Lösungsmenge L = [mm] \IR \backslash [-3,\bruch{5}{6}] [/mm]


Müsste so Stimmen denke ich. Danke trotzdem!

Bezug
                                
Bezug
Systeme von Ungleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:16 Mi 14.07.2010
Autor: gfm


> Also ich habe jetzt den bruch einmal größer 2 und einmal
> kleiner 5 betrachtet und erhalte dann als Lösungsmenge L =
> [mm]\IR \backslash [-3,\bruch{5}{6}][/mm]
>  
> Müsste so Stimmen denke ich. Danke trotzdem!

Paßt.

Falls Dich folgende Darstellung interessiert...

[mm] 2<\frac{5x+1}{2x-1}<5\gdw \frac{5x+1}{2x-1}\in (2,5)\gdw \frac{5}{2}+\frac{7}{4}*\frac{1}{x-\frac{1}{2}}\in (2,5)\gdw \frac{7}{4}*\frac{1}{x-\frac{1}{2}}\in \left(-\frac{1}{2}, \frac{5}{2}\right)\gdw \frac{1}{x-\frac{1}{2}}\in \left(-\frac{4}{14}, \frac{20}{14}\right)=\left(-\frac{4}{14},0\right)\cup \{0\}\cup\left(0, \frac{20}{14}\right) [/mm]
[mm] \gdw x-\frac{1}{2}\in\left(-\infty,-\frac{14}{4}\right)\cup\left(\frac{14}{20},\infty\right)\gdw x\in\left(-\infty,-\frac{12}{4}\right)\cup\left(\frac{24}{20},\infty\right)=\left(-\infty,-3\right)\cup\left(\frac{6}{5},\infty\right) [/mm]

LG

gfm

Bezug
                        
Bezug
Systeme von Ungleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:42 Mi 14.07.2010
Autor: M.Rex

Hallo

> Also ich habe jetzt den bruch einmal größer 2 und einmal
> kleiner 5 betrachtet und erhalte dann als Lösungsmenge L =
> [mm]\IR \backslash [-3,\bruch{5}{6}][/mm]
>  
> Müsste so Stimmen denke ich. Danke trotzdem!

Das Ergebnis ist korrekt.

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]