www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Systeme von DGl
Systeme von DGl < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Systeme von DGl: Wie soll ich vorgehn?
Status: (Frage) beantwortet Status 
Datum: 15:36 Do 23.06.2005
Autor: HomerSi

Hallo,

ich habe eine Frage wie man ein System von DGl löst.Ich weis es hat irgend etwas mit Eigenwerten zu tun. Wie man die errechnet weiß ich, aber wie soll ich dann vorgehen?

Zum Beispiel:

dy1/dx= 1*y1+2*y2
dy2/dx= 3*y2+4*y2

Das 1 und 2 nach den y sind die Index.

Wie soll ich da vorgehn.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Systeme von DGl: Char. Polynom
Status: (Antwort) fertig Status 
Datum: 17:42 Do 23.06.2005
Autor: MathePower

Hallo HomerSi,


> dy1/dx= 1*y1+2*y2
>  dy2/dx= 3*y2+4*y2

ich denke das System sieht so aus:

[mm]\begin{gathered} y\; = \;\left( {y_1 ,\;y_2 } \right)^T \hfill \\ y'\; = \;\left( {\begin{array}{*{20}c} 1 & 2 \\ 3 & 4 \\ \end{array} } \right)\;y \hfill \\ \end{gathered} [/mm]

Hier bestimmst Du zunächst das charakteristische Polynom:

[mm]\begin{gathered} \det \left( {A\; - \;\lambda \;I} \right)\; = \;0 \hfill \\ \det \left( {\begin{array}{*{20}c} {1\; - \;\lambda } & 2 \\ 3 & {4\; - \;\lambda } \\ \end{array} } \right)\; = \;0 \hfill \\ \Leftrightarrow \;\left( {1\; - \;\lambda } \right)\;\left( {4\; - \;\lambda } \right)\; - \;6\; = \;0 \hfill \\ \end{gathered} [/mm]

Dann bestimmst Du die Eigenvektoren zu dem jeweiligen Eigenwert [mm]\lambda[/mm].

Hierbei wird das Gleichungssystem [mm]\left( {A\; - \;\lambda \;I} \right)\;e_\lambda \; = \;0[/mm] für jeden Eigenwert gelöst.
Die nichttrivialen Lösungen sind die Eigenräume zum zugehörigen Eigenwert [mm]\lambda[/mm].

Jetzt wird aus den ermittelten Eigenvektoren eine Transformationsmatrix gebastelt:

[mm]C\; = \;\left({e_{\lambda _1 } ,\;e_{\lambda _2 } } \right)[/mm]

Durch die Transformation y = C z wird das oben angegebene System in ein einfacheres transformiert.

Durch die Anwendung dieser Transformation wird das System auf Diagonalgestalt gebracht.

Dies lautet dann [mm]z'\; = \;C^{ - 1} \;A\;C\;z[/mm]

[mm]z'\; = \;\left( {\begin{array}{*{20}c} {\lambda _1 } & 0 \\ 0 & {\lambda _2 } \\ \end{array} } \right)\;z[/mm]

Das gilt aber nur für den Fall von einfachen Eigenwerten.

Dies läßt sich nun einfacher lösen:

Um die Lösungen für y zu erhalten, müssen die Lösungen von z mit Hilfe der Transformation nach y überführt werden.

Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]