www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentialgleichungen" - System von ODEs
System von ODEs < DGL < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

System von ODEs: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 22:31 Sa 24.01.2015
Autor: m0ppel

Aufgabe
Betrachte das folgende System von ODEs:
[mm]x_1'=a(x_1^2+x_2^2)x_1-b(x_1^2+x_2^2)x_2[/mm]
[mm]x_2'=a(x_1^2+x_2^2)x_2+b(x_1^2+x_2^2)x_1[/mm]
mit den differenzierbaren Funktionen [mm]a,b: \R \to \R[/mm]

a) Finde für den Spezialfall [mm]a(z)=-z[/mm] und [mm]b(z)=2[/mm] alle Fixpunkte und diskutiere deren Stabilität.
b) Transformiere das System in Polarkoordinaten [mm]\Phi, r[/mm] mit
[mm]r^2=x_1^2+x_2^2[/mm] und [mm]\Phi =arctan(\bruch{x_1}{x_2})[/mm]
c) Gibt die Transformationen einen Hinweis auf die Stabilität der Fixpunkte?



Hallo liebe Matheraumler/-innen,


neue Bearbeitet
Zu a)
[mm]0=-(x_1^2+x_2^2)x_1-2x_2 \gdw \bruch{2x_2}{x_1}=-(x_1^2+x_2^2)x_1[/mm]
[mm]0=-(x_1^2+x_2^2)x_2+2x_1 \Rightarrow 0=\bruch{2x_2}{x_1}x_2+2x_1 \gdw x_1=x_2=0[/mm]

Stabilität des FP (x ist der FP): Wenn spectral abscissa [mm]\nu Df(x)<0[/mm], dann ist der FP asy. stable. Da hier
[mm]Df(x)=\pmat{ 0 & -2 \\ 2 & 0 } [/mm] folgt [mm]\nu (Df(x))=0[/mm] und somit nicht asy. stable. Über Stabilität kann so keine weitere Aussage getroffen werden.

b) Durch Transformation erhalte ich

[mm]\vektor{r' \\ \Phi'}=\vektor{a(r^2)r \\ b(r^2)}[/mm]

c) Nun kommt mein Problem:
[mm](r,\Phi)[/mm] ist FP, wenn [mm]a(r^2)r=0[/mm] und [mm]b(r^2)=0[/mm] damit gilt: 1)[mm]r=0[/mm] und [mm]b(r^2)=0[/mm] oder 2) [mm] a(r^2)=0[/mm]und [mm]b(r^2)=0[/mm]

und [mm]D g(r,\Phi)=\pmat{ a'(r^2)r^3+a(r^2) & 0 \\ 2rb'(r^2) & 0 }[/mm] daraus wird
1) [mm]\pmat{ a(r^2) & 0 \\ 0 & 0 }[/mm] (für r muss so gewählt werden, dass [mm]b(r^2)=0[/mm] gilt) die EW davon sind [mm]a(r^2)[/mm] und [mm]0[/mm] --> nicht asy. stable
2)[mm]\pmat{ a'(r^2)r^3+ & 0 \\ 2rb'(r^2) & 0 }[/mm] die EW davon sind (Wahl von r hängt von den obigen Bedingungen ab)[mm]a'(r^2)r^3[/mm] und [mm]0[/mm] auch hier kann ich so keine Aussage treffen.

Ist das so richtig?
Für meine Wahl der Funktionen [mm]a,b[/mm] wie in a) kann ich gar keinen Fixpunkt finden. Wie muss ich dann daran gehen?

        
Bezug
System von ODEs: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:20 Do 29.01.2015
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
                
Bezug
System von ODEs: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 20:49 Di 31.03.2015
Autor: m0ppel

Aufgabe
Betrachte das folgende System von ODEs:
[mm]x_1'=a(x_1^2+x_2^2)x_1-b(x_1^2+x_2^2)x_2[/mm]
[mm]x_2'=a(x_1^2+x_2^2)x_2+b(x_1^2+x_2^2)x_1[/mm]
mit den differenzierbaren Funktionen [mm]a,b: \R \to \R[/mm]

a) Finde für den Spezialfall [mm]a(z)=-z[/mm] und [mm]b(z)=2[/mm] alle Fixpunkte und diskutiere deren Stabilität.
b) Transformiere das System in Polarkoordinaten [mm]\Phi, r[/mm] mit
[mm]r^2=x_1^2+x_2^2[/mm] und [mm]\Phi =arctan(\bruch{x_1}{x_2})[/mm]
c) Gibt die Transformationen einen Hinweis auf die Stabilität der Fixpunkte?


Liebe Matheräumler,

ich bin über eine meiner alten Aufgaben gestolpert und kann diese leider immer noch nicht zufriedenstellend beantworten. Daher würde ich mich freuen, wenn sich hier jemand findet, der mir weiterhelfen kann.

Vielen lieben Dank nochmals!

Gruß
m0pple

Bezug
                        
Bezug
System von ODEs: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:20 Mi 08.04.2015
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]