System von ODEs < DGL < Numerik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) überfällig | Datum: | 22:31 Sa 24.01.2015 | Autor: | m0ppel |
Aufgabe | Betrachte das folgende System von ODEs:
[mm]x_1'=a(x_1^2+x_2^2)x_1-b(x_1^2+x_2^2)x_2[/mm]
[mm]x_2'=a(x_1^2+x_2^2)x_2+b(x_1^2+x_2^2)x_1[/mm]
mit den differenzierbaren Funktionen [mm]a,b: \R \to \R[/mm]
a) Finde für den Spezialfall [mm]a(z)=-z[/mm] und [mm]b(z)=2[/mm] alle Fixpunkte und diskutiere deren Stabilität.
b) Transformiere das System in Polarkoordinaten [mm]\Phi, r[/mm] mit
[mm]r^2=x_1^2+x_2^2[/mm] und [mm]\Phi =arctan(\bruch{x_1}{x_2})[/mm]
c) Gibt die Transformationen einen Hinweis auf die Stabilität der Fixpunkte? |
Hallo liebe Matheraumler/-innen,
neue Bearbeitet
Zu a)
[mm]0=-(x_1^2+x_2^2)x_1-2x_2 \gdw \bruch{2x_2}{x_1}=-(x_1^2+x_2^2)x_1[/mm]
[mm]0=-(x_1^2+x_2^2)x_2+2x_1 \Rightarrow 0=\bruch{2x_2}{x_1}x_2+2x_1 \gdw x_1=x_2=0[/mm]
Stabilität des FP (x ist der FP): Wenn spectral abscissa [mm]\nu Df(x)<0[/mm], dann ist der FP asy. stable. Da hier
[mm]Df(x)=\pmat{ 0 & -2 \\ 2 & 0 } [/mm] folgt [mm]\nu (Df(x))=0[/mm] und somit nicht asy. stable. Über Stabilität kann so keine weitere Aussage getroffen werden.
b) Durch Transformation erhalte ich
[mm]\vektor{r' \\ \Phi'}=\vektor{a(r^2)r \\ b(r^2)}[/mm]
c) Nun kommt mein Problem:
[mm](r,\Phi)[/mm] ist FP, wenn [mm]a(r^2)r=0[/mm] und [mm]b(r^2)=0[/mm] damit gilt: 1)[mm]r=0[/mm] und [mm]b(r^2)=0[/mm] oder 2) [mm] a(r^2)=0[/mm]und [mm]b(r^2)=0[/mm]
und [mm]D g(r,\Phi)=\pmat{ a'(r^2)r^3+a(r^2) & 0 \\ 2rb'(r^2) & 0 }[/mm] daraus wird
1) [mm]\pmat{ a(r^2) & 0 \\ 0 & 0 }[/mm] (für r muss so gewählt werden, dass [mm]b(r^2)=0[/mm] gilt) die EW davon sind [mm]a(r^2)[/mm] und [mm]0[/mm] --> nicht asy. stable
2)[mm]\pmat{ a'(r^2)r^3+ & 0 \\ 2rb'(r^2) & 0 }[/mm] die EW davon sind (Wahl von r hängt von den obigen Bedingungen ab)[mm]a'(r^2)r^3[/mm] und [mm]0[/mm] auch hier kann ich so keine Aussage treffen.
Ist das so richtig?
Für meine Wahl der Funktionen [mm]a,b[/mm] wie in a) kann ich gar keinen Fixpunkt finden. Wie muss ich dann daran gehen?
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 23:20 Do 29.01.2015 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|
|
Status: |
(Frage) überfällig | Datum: | 20:49 Di 31.03.2015 | Autor: | m0ppel |
Aufgabe | Betrachte das folgende System von ODEs:
[mm]x_1'=a(x_1^2+x_2^2)x_1-b(x_1^2+x_2^2)x_2[/mm]
[mm]x_2'=a(x_1^2+x_2^2)x_2+b(x_1^2+x_2^2)x_1[/mm]
mit den differenzierbaren Funktionen [mm]a,b: \R \to \R[/mm]
a) Finde für den Spezialfall [mm]a(z)=-z[/mm] und [mm]b(z)=2[/mm] alle Fixpunkte und diskutiere deren Stabilität.
b) Transformiere das System in Polarkoordinaten [mm]\Phi, r[/mm] mit
[mm]r^2=x_1^2+x_2^2[/mm] und [mm]\Phi =arctan(\bruch{x_1}{x_2})[/mm]
c) Gibt die Transformationen einen Hinweis auf die Stabilität der Fixpunkte? |
Liebe Matheräumler,
ich bin über eine meiner alten Aufgaben gestolpert und kann diese leider immer noch nicht zufriedenstellend beantworten. Daher würde ich mich freuen, wenn sich hier jemand findet, der mir weiterhelfen kann.
Vielen lieben Dank nochmals!
Gruß
m0pple
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 21:20 Mi 08.04.2015 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|