www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Symmetrien beliebiger n-Ecke
Symmetrien beliebiger n-Ecke < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Symmetrien beliebiger n-Ecke: Beweisansatz
Status: (Frage) beantwortet Status 
Datum: 20:42 Mo 10.11.2014
Autor: laeuftbeidir

Aufgabe
Gegeben sei ein $n$-Eck [mm] $P_n$ [/mm] in der Ebene. Zeigen Sie:

a) Jede Symmetrieabbildung [mm] $f\in Sym(P_n)$ [/mm] ist entweder eine Drehung oder eine Spiegelung.
(Hinweis: Sie dürfen für den Beweis die folgende Aussage benutzen: Jede Isometrie der Ebene ist durch die Bildpunkte von drei Punkten festgelegt, welche nicht auf einer gemeinsamen Geraden liegen.)

b) [mm] $Sym(P_n)$ [/mm] besitzt höchstens $2n$ Elemente.

c) Besitzt [mm] $Sym(P_n)$ [/mm] genau $2n$ Elemente, so ist [mm] $P_n$ [/mm] ein regelmäßiges $n$-Eck.

d) Wir bezeichnen die Symmetriegruppe des regelmäßigen $n$-Ecks mit [mm] $D_n$. [/mm] Untersuchen Sie für die Fälle $n=3$ und $n=4$ die folgende Frage: Für welche Untergruppen $H$ von [mm] $D_n$ [/mm] gibt es ein $n$-Eck [mm] $P_n$, [/mm] für das [mm] $Sym(P_n)$ [/mm] isomorph zu $H$ ist.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo!

Ich bin bei dieser Aufgabe leider völlig ansatzlos.

Kann ich bei a) in irgendeiner Form einen Widerspruchsbeweis führen?
Annehmen $f$ sei weder Spiegelung noch Drehung und damit zeigen, dass die Voraussetzung aus dem Hinweis verletzt wird? Wenn ja, wie fange ich am Besten an?

Bei b) habe ich erst überlegt eine Induktion über Verknüpfungstafeln zu führen, bin damit aber gescheitert. Als nächsten Ansatz habe ich überlegt, ob man (wie vielleicht auch bei Teil c) über die Ordnung etwas beweisen kann, bin daran aber ebenfalls gescheitert.

Kann mir vielleicht jemand einen Ansatz geben?

Vielen Dank!

        
Bezug
Symmetrien beliebiger n-Ecke: Antwort
Status: (Antwort) fertig Status 
Datum: 22:25 Mi 12.11.2014
Autor: justdroppingby

Hallo,

a)
bedenke, dass Kanten wieder auf kanten abgebildet werden müssen.
D.h. insbesondere die Bildpunkte zweier nebeneinanderliegender Punkte liegen wieder nebeneinander.
Und je nachdem ob sich die "Richtung" der Kante geändert hat ist es eine Drehung oder Spiegelung.

b)
Rein aus Kuriosität:
Was ist eine Induktion über Verknüpfungstafeln ?
Es geht hier ziemlich einfach: Zählen,
Wie viele Drehungen gibt es höchsten, wie viele Spiegelungen?

c)
die Ordnung von was in was?
Man könnte z.B. über die Ordnung der Drehungen argumentieren und damit die Drehwinkel bstimmen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]