www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Symmetriegruppe
Symmetriegruppe < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Symmetriegruppe: Würfel
Status: (Frage) beantwortet Status 
Datum: 08:05 Di 03.11.2009
Autor: jumape

Aufgabe
Die Symmetriegruppe des Würfels hat 48 Elemente. Welche? Warum nicht mehr?

STimmt das überhaupt?
Die Drehungen ergeben 24 Elemente. Die S4. Dann müssten die übrigen 24 Elemente durch Spiegelungen erzeugt werden. Warum haben wir aber nicht die ganze S8?

        
Bezug
Symmetriegruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 08:53 Di 03.11.2009
Autor: statler

Einen wunderschönen guten Morgen!

> Die Symmetriegruppe des Würfels hat 48 Elemente. Welche?
> Warum nicht mehr?
>  STimmt das überhaupt?
>  Die Drehungen ergeben 24 Elemente. Die S4.

Ist das die S4? Weiß ich im Moment nicht, deswegen noch rot-grün.

> Dann müssten
> die übrigen 24 Elemente durch Spiegelungen erzeugt werden.

Das ist so nicht schön formuliert.

> Warum haben wir aber nicht die ganze S8?

Die S8 ist verdammt groß, und du kannst beim Würfel durch eine Symmetrie z. B. nicht 2 benachbarte Ecken vertauschen und den Rest festlassen, weil der Würfel ja irgendwie starr ist.

Gruß aus HH-Harburg
Dieter

Bezug
        
Bezug
Symmetriegruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 09:51 Di 03.11.2009
Autor: Al-Chwarizmi


> Die Symmetriegruppe des Würfels hat 48 Elemente. Welche?
> Warum nicht mehr?
>  STimmt das überhaupt?
>  Die Drehungen ergeben 24 Elemente. Die S4. Dann müssten
> die übrigen 24 Elemente durch Spiegelungen erzeugt werden.
> Warum haben wir aber nicht die ganze S8?


Hallo jumape,

Tatsächlich ist die Gruppe der Drehungen des Würfels
isomorph zur Symmetriegruppe [mm] S_4. [/mm]
Wenn wir dann auch die Spiegelung des Würfels
an einer seiner Symmetrieebenen zulassen, kommen
wir insgesamt zu den 48 möglichen Kongruenzabbil-
dungen, welche insbesondere alle Kantenbeziehungen
intakt lassen.
Die gesamte Symmetriegruppe des Würfels entspricht
dem direkten Produkt $\ [mm] S_2\times S_4$. [/mm]
"Vergisst" man die ganze Geometrie,
kommt man natürlich zur [mm] S_8. [/mm] Dies hat aber dann
eben nichts mehr mit dem Würfel zu tun, sondern
nur noch mit den Permutationen von 8 unterscheid-
baren Elementen.


LG    Al-Chw.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]