Surjektivität und Injektivität < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 13:19 Mi 30.10.2013 | Autor: | DragoNru |
Aufgabe | 22) Untersuchen Sie jeweils die angegebene Abbildung auf Surjektivität und Injektivität.
e) f: [mm] \IR^3 \to \IR^2, [/mm] (x,y,z) [mm] \mapsto [/mm] (x+y,y+z)
f) f: [mm] \IR^2 \to \IR^3, [/mm] (x,y) [mm] \mapsto [/mm] (x,x+y,y)
g) f: [mm] \IR^2 \to \IR^2, [/mm] (x,y) [mm] \mapsto [/mm] (x*y,x+y)
h) f: [mm] \IR^3 \to \IR^3, [/mm] (x,y,z) [mm] \mapsto [/mm] (x,-z,y) |
Moin,
Hab versucht e) zu lösen. Wäre das so korrekt?
e) f: [mm] \IR^3 \to \IR^2, [/mm] (x,y,z) [mm] \mapsto [/mm] (x+y,y+z)
Die Abbildung f ist Surjektiv, denn für beliebige [mm] x,z\in \IR, [/mm] y=0 gilt (x,0,z) [mm] \mapsto [/mm] (x,z), somit wird jedem Urbild genau ein Bild zugewiesen.
Die Abbildung f ist nicht injektiv, denn laut def. gilt für Injektivität [mm] x_1\not= x_2\Rightarrow f(x_1)\not= f(x_2), [/mm] aber z.B. [mm] (2,1,2)\not= (1,2,1)\Rightarrow [/mm] (3,3)=(3,3), somit nicht wie definiert.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 13:26 Mi 30.10.2013 | Autor: | M.Rex |
Hallo
> 22) Untersuchen Sie jeweils die angegebene Abbildung auf
> Surjektivität und Injektivität.
>
> e) f: [mm]\IR^3 \to \IR^2,[/mm] (x,y,z) [mm]\mapsto[/mm] (x+y,y+z)
> f) f: [mm]\IR^2 \to \IR^3,[/mm] (x,y) [mm]\mapsto[/mm] (x,x+y,y)
> g) f: [mm]\IR^2 \to \IR^2,[/mm] (x,y) [mm]\mapsto[/mm] (x*y,x+y)
> h) f: [mm]\IR^3 \to \IR^3,[/mm] (x,y,z) [mm]\mapsto[/mm] (x,-z,y)
> Moin,
>
> Hab versucht e) zu lösen. Wäre das so korrekt?
>
> e) f: [mm]\IR^3 \to \IR^2,[/mm] (x,y,z) [mm]\mapsto[/mm] (x+y,y+z)
>
> Die Abbildung f ist Surjektiv, denn für beliebige [mm]x,z\in \IR,[/mm]
> y=0 gilt (x,0,z) [mm]\mapsto[/mm] (x,z), somit wird jedem Urbild
> genau ein Bild zugewiesen.
Das ist korrekt, aber du solltest es anders formulieren.
Da [mm] (x;0;z)\mapsto(x;z) [/mm] gibt es zu jedem Element (x;z) aus der Bildmenge mindestens ein Element der Definitionsmenge, dass auf (x;z) abgebildet wird.
>
> Die Abbildung f ist nicht injektiv, denn laut def. gilt
> für Injektivität [mm]x_1\not= x_2\Rightarrow f(x_1)\not= f(x_2),[/mm]
> aber z.B. [mm](2,1,2)\not= (1,2,1)\Rightarrow[/mm] (3,3)=(3,3),
> somit nicht wie definiert.
So ist es.
Marius
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 13:47 Mi 30.10.2013 | Autor: | DragoNru |
Danke für die Verbesserung.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 13:51 Mi 30.10.2013 | Autor: | M.Rex |
> Danke für die Verbesserung.
Das Prinzip war ja korrekt, bei der Surjektivität ist es aber nur wichtig, dass jedes Element der Bildmenge getroffen wird. Wieviele Elemente der Definitionsmenge auf ein Bild der Wertemenge abgebildet werden, ist egal.
Marius
|
|
|
|