Surjektivität einer Abbildung < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Untersuchen Sie, ob die folgende Abbildung f : R → R surjektiv, injektiv oder bijektiv ist: f(x) = [mm] x\*sinx [/mm] |
hi an alle,
ich hab vor zum nächsten semester mit dem mathestudium anzufangen und wollt mich schon mal etwas vorbereiten und hätte gleich mal eine frage zu der aufgabe oben:
injektivität:
Lässt sich direkt widerlegen mit der symmetrie der funktion ?
es gilt dann ja f(x)=f(-x).. mit dem beispiel: [mm] f(-\pi)=f(\pi)
[/mm]
surjektivität:
da hab ich probleme das formal zu zeigen .. ich muss ja ein x finden für das gilt f(x)=y mit [mm] y\in \IR
[/mm]
es gilt ja das sin(x) periodisch verläuft und [mm] sin(x)\in[-1;1]. [/mm]
kann man dann sagen [mm] a\in[-1;1] [/mm] sodass gilt: x*a=y ?
dann würden ja alle y werte erreicht werden (lineare funktion)..
das problem dabei ist aber irgendwie das x und a in beziehung stehen, nämlich ist dann ja [mm] x=sin^{-1}(a). [/mm] Also würde ja folgen: [mm] sin^{-1}(a)\*sin(a)=y [/mm] und hier werden ja nicht alle y werte erreicht ! ..
oder begründet man das einfach so, dass f(x) ein produkt von zwei funktionen ist und eine davon bijektiv ist .. nämich x mit f(x)=y ?
wäre dankbar für tipps :)
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:28 So 24.06.2012 | Autor: | Teufel |
Hi!
Die Injektivität ist ok.
Für die Surjektivität würde ich spontan den Zwischenwertsatz verwenden, weil f ja stetig ist. Sagen wir erst einmal $y>0$. Dann gilt für [mm] $x_0=0$ $f(x_0)=00$ [/mm] zu bestimmen, für den [mm] $f(x_1)>y$ [/mm] gilt.
|
|
|
|
|
danke für die antwort !
ich hab die aufgabe allerdings aus einem matheskript und hab da glaub ich nichts von einem zwischenwertsatz gelesen .. geht das vielleicht noch irgendwie anders ?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:21 So 24.06.2012 | Autor: | Teufel |
Welches Skript nutzt du denn? Ist das zufällig online gestellt? Falls nicht: Steht da vielleicht was von einem Nullstellensatz? Damit funktioniert es genau so. Diese Sätze kommen auch normalerweise relativ früh dran, deswegen wundert es mich, dass sie nicht erwähnt waren.
|
|
|
|
|
hi
ja das mit dem zwischenwertsatz hab ich wohl überlesen, weil ich direkt zu den aufgaben gegangen bin ^^
ok ich hab mir da mal was überlegt:
also sei y > 0 .. für [mm] x_{0}=0 [/mm] gilt [mm] f(x_{0})=0 [/mm] < y
wenn ich y = [mm] x_{k} [/mm] definiere, mit [mm] x_{k}=\bruch{\pi}{2}+2k\pi (k\in \IZ), [/mm] dann gilt:
[mm] f(x_{k})=x_{k}*sin(x_{k})=x_{k}=y [/mm] nach definition.
kann ich daraus schließen, dass alle y werte erreicht werden ?
danke schon mal für eine antwort :)
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:40 So 24.06.2012 | Autor: | Teufel |
Hi!
Nein, das sagt dir leider nur, dass du alle y erreichen kannst, die diese bestimmte Form haben! y=1 kannst du z.B. nicht in dieser Form darstellen.
Also die Logik ist folgende: Wenn man erstmal y>0 annimmt, dann will man 2 x-Werte [mm] x_0 [/mm] und [mm] x_1 [/mm] finden, sodass [mm] f(x_0)y [/mm] gilt.
Du könntest als [mm] x_1 [/mm] z.B. die kleinste Zahl wählen, die größer als y und von der Form deiner [mm] x_k [/mm] ist. Du kannst ja nachrechnen, dass dann [mm] f(x_1)>y [/mm] gilt!
Und analog kanst du das dann auch für y<0 machen. Und y=0 hast du schon erledigt wegen f(0)=0. Man kann alle 3 Fälle sicher auch in einem Rutsch irgendwie machen, vielleicht findest du ja noch einen anderen Ansatz. :) Aber mit dem geht es auf alle Fälle.
|
|
|
|