www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mengenlehre" - Surjektion, Injektion
Surjektion, Injektion < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Surjektion, Injektion: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 22:10 Di 07.11.2006
Autor: zetamy

Aufgabe
Beweisen Sie folgende Aussagen:
a) [mm]f: X\to Y[/mm] ist genau dann surjektiv, wenn für beliebige Abbildungen [mm]g_1, g_2:Y\to Z[/mm] aus [mm]g_1\circ f=g_2\circ f[/mm] die Beziehung [mm]g_1=g_2[/mm] folgt.

b) [mm]g:X\to Z[/mm] ist genau dann injektiv, wenn für beliebige Abbildungen [mm]f_1, f_2: X\to Y[/mm] aus [mm]g\circ f_1=g\circ f_2[/mm] folgt.

Hallo,

meine Lösungen scheinen mir selbst nicht ganz schlüssig. Bin für jeden Tipp/jede Korrektur dankbar.

a) Sei f surjektiv, also gilt: [mm]\forall y\in Y \exists x\in X[/mm] mit [mm]f(x)=y [/mm] und seien [mm]g_1, g_2: Y\to Z[/mm] beliebige Abbildungen mit [mm]g_1(y)=z[/mm] und [mm]g_2(y)=z \forall y\in Y[/mm]. Dann existiert [mm]\forall z\in Z[/mm], für die [mm]g_1(y)=z[/mm] gilt, min ein [mm]x\in X[/mm] mit [mm]g_1(y)=g_1(f(x))=(g_1\circ f)(x)=z[/mm]. Ebenso für g2. Daraus folgt [mm]g_1\circ f=g_2\circ f[/mm], wenn gilt [mm] g_1=(g_2\circ f)\circ f=g_2\circ(f\circ f)=g_2[/mm].
Dann ist jedem [mm] z\in Z [/mm], für das gilt [mm] (g\circ f)=z [/mm] auch min ein [mm] y\in Y [/mm] zugeordnet und daher jedem [mm] y\in Y [/mm] min ein [mm] x\in X [/mm], also f surjektiv.

b) Sei g injektiv, so gilt laut Def [mm]\forall z\in Z[/mm] existiert höchstens ein [mm]y\in Y[/mm], und seien [mm]f_1, f_2[/mm] beliebige Abb. Da zudem jedem [mm]x\in X[/mm] genau ein [mm]y\in Y[/mm] und jedem [mm]y\in Y[/mm] genau ein [mm]z\in Z[/mm] zugeordnet ist, existiert für jedes [mm]x\in X[/mm] genau ein [mm]z\in Z[/mm]. Dann existiert für alle [mm]x\in X[/mm] mit [mm]f_1(x)=y[/mm] bzw [mm]f_2(x)=x[/mm], für die g(y)=z gilt, auch ein [mm]z\in Z[/mm] mit [mm](g\circ f_1)(x)=z[/mm] bzw [mm](g\circ f_2)(x)=z[/mm]. Da g injektiv folgt, [mm]g\circ f_1=g\circ f_2=z[/mm], also [mm]f_1=g\circ(g\circ f_2)=(g\circ g)\circ f_2=f_2[/mm].
Dann ist jedem [mm]x\in X[/mm], für das f(x)=y gilt, genau ein [mm]z\in Z[/mm] zugeordnet. Da f beliebig, muss g inj sein.


Hoffentich ist das kein zu großer Schwachsinn ;-).

Vielen Dank nochmal, zetamy.

        
Bezug
Surjektion, Injektion: Antwort
Status: (Antwort) fertig Status 
Datum: 22:48 Di 07.11.2006
Autor: DaMenge

Hallo,


>  
> a) Sei f surjektiv, also gilt: [mm]\forall y\in Y \exists x\in X[/mm]
> mit [mm]f(x)=y[/mm] und seien [mm]g_1, g_2: Y\to Z[/mm] beliebige Abbildungen
> mit [mm]g_1(y)=z[/mm] und [mm]g_2(y)=z \forall y\in Y[/mm]. Dann existiert
> [mm]\forall z\in Z[/mm], für die [mm]g_1(y)=z[/mm] gilt, min ein [mm]x\in X[/mm] mit
> [mm]g_1(y)=g_1(f(x))=(g_1\circ f)(x)=z[/mm]. Ebenso für g2. Daraus
> folgt [mm]g_1\circ f=g_2\circ f[/mm], wenn gilt [mm]g_1=(g_2\circ f)\circ f=g_2\circ(f\circ f)=g_2[/mm].
>  

da steckt schon der Wurm drin.
mach es mal ganz richtig indem du beide Richtungen seperat zeigst, also:
1) sei f surjektiv, dann folgt : "aus [mm]g_1\circ f=g_2\circ f[/mm] folgt [mm] g_1=g_2" [/mm]

2) es gelte : "aus [mm]g_1\circ f=g_2\circ f[/mm] folgt [mm] g_1=g_2" [/mm] dann folgt daraus, dass f surjektiv ist.

zu 1) f sei surjektiv und es gelte  [mm]g_1\circ f=g_2\circ f[/mm] , angenommen es würde dann nicht gelten, dass [mm] g_1=g_2 [/mm] ist, dann gibt es also ein y mit [mm] $g_1(y)\not= g_2(y)$ [/mm] , zu diesem y gibt es aber wegen der surjektivität von f ein x, so dass...
schaffst du den rest hier von 1)  ?

zu 2) es gelte für BELIEBIGE [mm] g_1 [/mm] und [mm] g_2 [/mm] die Aussage:
"aus [mm]g_1\circ f=g_2\circ f[/mm] folgt [mm] g_1=g_2" [/mm] , angenommen f sei nicht surjektiv, d.h. es gibt ein y, dass "nicht getroffen wird", was passiert wenn du dir [mm] g_1 [/mm] und [mm] g_2 [/mm] wählst mit [mm] $g_1(y)\not= g_2(y)$ [/mm] ?!?

>  
> b) Sei g injektiv, so gilt laut Def [mm]\forall z\in Z[/mm]
> existiert höchstens ein [mm]y\in Y[/mm], und seien [mm]f_1, f_2[/mm]
> beliebige Abb. Da zudem jedem [mm]x\in X[/mm] genau ein [mm]y\in Y[/mm] und
> jedem [mm]y\in Y[/mm] genau ein [mm]z\in Z[/mm] zugeordnet ist, existiert für
> jedes [mm]x\in X[/mm] genau ein [mm]z\in Z[/mm]. Dann existiert für alle [mm]x\in X[/mm]
> mit [mm]f_1(x)=y[/mm] bzw [mm]f_2(x)=x[/mm], für die g(y)=z gilt, auch ein
> [mm]z\in Z[/mm] mit [mm](g\circ f_1)(x)=z[/mm] bzw [mm](g\circ f_2)(x)=z[/mm]. Da g
> injektiv folgt, [mm]g\circ f_1=g\circ f_2=z[/mm],

ja, bis hierhin scheint es zwar nicht wirklich voran zu kommen, aber es ist zumindest nicht falsch.


> also
> [mm]f_1=g\circ(g\circ f_2)=(g\circ g)\circ f_2=f_2[/mm].


Das hier ergibt keinen Sinn - rein von der Schreibweise kannst du nicht g nach g schreiben... (war im Teil a) auch schon falsch)

>  Dann ist
> jedem [mm]x\in X[/mm], für das f(x)=y gilt, genau ein [mm]z\in Z[/mm]
> zugeordnet. Da f beliebig, muss g inj sein.

versuch doch auch hier mal beide Richtungen seperat (und am einfachsten mit Widerspruch) zu führen, denn die zweite Richtung hast du versucht da im letzten Satz unterzubringen, was eindeutig zu wenig ist.

viele Grüße
DaMenge

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]