www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Supremum und Infimum
Supremum und Infimum < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Supremum und Infimum: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 13:04 So 30.04.2006
Autor: Raingirl87

Aufgabe
Bestimmen Sie Supremum und Infimum der folgenden Mengen reeller Zahlen:

(a) M1 := { [mm] \bruch{(-1)^{m}}{n} [/mm] +  [mm] \bruch{(-1)^{n}}{m} [/mm] : m, n [mm] \in \IN [/mm] }

(b) M2 := { [mm] (-1)^{n} [/mm] + sin [mm] (\bruch{n \pi}{4}) [/mm] : n [mm] \in \IN [/mm] }

Hallo!

Kann mir jemand erklären, wie ich Supremum und Infimum bestimme?
Ich hab gelesen dass ich da irgendwie erst die Nullstellen bestimmen muss und dann die Ableitung = 0 setzen...?

DANKE!

        
Bezug
Supremum und Infimum: Methoden
Status: (Antwort) fertig Status 
Datum: 18:13 So 30.04.2006
Autor: Infinit

Hallo Raingirl87,
die Vorgehensweise zur Bestimmung des Supremums oder Infimums hängt von den zu untersuchenden Funktionen ab. Zunächst mal zur Definition: Ein Supremum ist die kleinste obere Schranke einer Wertemenge, ein Infimum die größte untere Schranke einer Wertemenge.
In Deinem Fall liegen Punktmengen vor und da wüsste ich jetzt keine Methode, um mit Differential-Analysis an die Bestimmung der Schranken heranzugehen. Bei einer reelwerten Funktion geht dies, und hier bildet man innerhalb des Definitionsbereiches die Ableitungen der Funktion und schaut nach Minimum und Maximum.
Bei Deinen Folgen hilft wohl nur eine Abschätzung weiter. In der ersten Folge ist sicherlich -2 ein Infimum, und 1 dürfte das Supremum sein. Für die zweite Folge lassen sich ähnliche Abschätzungen aufgrund der Sinusfunktion machen, die ja nur zwischen -1 und 1 schwanken kann in ihrem Wertebereich.
Für solche Punktmengen lässt sich leider kein festes Abarbeitungsschema angeben.
Hoffe, ich habe Dir damit etwas geholfen.
Viele Grüße,
Infinit

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]