www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Supremum, folgen, grenzwerte
Supremum, folgen, grenzwerte < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Supremum, folgen, grenzwerte: Tipps
Status: (Frage) beantwortet Status 
Datum: 18:48 Sa 14.11.2009
Autor: aly19

Aufgabe
Zeigen sie:
a)eine angeorndete Menge mit der supremumseigenschaft hat auch die infimumeigenschaft: jede nichtleere nach unten beschränkte menge hat ein infimum. (hinweis: betrachten sie die menge der unteren schranken)
b) sei r [mm] \in \IR [/mm] und [mm] n\in \IN [/mm] , [mm] n\ge [/mm] 1. zeigen sie: es gibt eine rationale zahl q mit [mm] r-1/n\le [/mm] q [mm] \le [/mm] r.
c) zeigen sie, das jede reelle zahl grenzwert einer folge von rationalen zahlen ist.  

hi vielleicht kann mir jemand bei den aufgaben ja ein paar tipps geben. habe selbst leider noch keine ansätze. verstehe diesmal den aufgabenzettel nicht wirklich. würde mich also über etwas hilfe sehr freuen.

        
Bezug
Supremum, folgen, grenzwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 10:18 Mo 16.11.2009
Autor: felixf

Hallo!

> Zeigen sie:
> a)eine angeorndete Menge mit der supremumseigenschaft hat
> auch die infimumeigenschaft: jede nichtleere nach unten
> beschränkte menge hat ein infimum. (hinweis: betrachten
> sie die menge der unteren schranken)

Na, der Hinweis sagt doch schon alles. Nimm dir eine nach unten beschraenkte nichtleere Menge $A$ und definiere $B$ als die Menge der unteren Schranken von $A$. Zeige, dass $B$ nach oben beschraenkt und nicht-leer ist: damit existiert das Supremum. Zeige dann, dass dieses Supremum das Infimum von $A$ sein muss.

>  b) sei r [mm]\in \IR[/mm] und [mm]n\in \IN[/mm] , [mm]n\ge[/mm] 1. zeigen sie: es
> gibt eine rationale zahl q mit [mm]r-1/n\le[/mm] q [mm]\le[/mm] r.

Versuche $q$ von der Form [mm] $\frac{k}{n}$ [/mm] zu waehlen mit $k [mm] \in \IZ$. [/mm] Dann waer ja $n r - 1 [mm] \le [/mm] k [mm] \le [/mm] n r$. Kannst du zeigen, dass es eine ganze Zahl $k$ gibt mit $n r - 1 [mm] \le [/mm] k [mm] \le [/mm] n r$?

>  c) zeigen sie, das jede reelle zahl grenzwert einer folge
> von rationalen zahlen ist.

Verwende b).

LG Felix


Bezug
                
Bezug
Supremum, folgen, grenzwerte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:22 Do 19.11.2009
Autor: aly19

Könnte ich b) quasi so machen:
sei q=z/n mit [mm] z\in \IZ. [/mm]
Es gibt ein r [mm] \in \IR [/mm] mit
[mm] z-1\le [/mm] r*n [mm] \le [/mm] z
(z-1)/n [mm] \le r\le [/mm] z/n
r [mm] \le [/mm] z/n=q=(z-1)/n +1/n [mm] \le [/mm] r+1/n
r-1/n [mm] \le q\le [/mm] r
?? oder geht das so nicht? ich bin mir unsier bei der ersten zeile. wäre froh wenn mir noch jemand antwortet.


Bezug
                        
Bezug
Supremum, folgen, grenzwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 06:05 Sa 21.11.2009
Autor: felixf

Hallo!

> Könnte ich b) quasi so machen:
>  sei q=z/n mit [mm]z\in \IZ.[/mm]
>  Es gibt ein r [mm]\in \IR[/mm] mit
> [mm]z-1\le[/mm] r*n [mm]\le[/mm] z
>  (z-1)/n [mm]\le r\le[/mm] z/n
>  r [mm]\le[/mm] z/n=q=(z-1)/n +1/n [mm]\le[/mm] r+1/n
> r-1/n [mm]\le q\le[/mm] r
>  ?? oder geht das so nicht? ich bin mir unsier bei der
> ersten zeile. wäre froh wenn mir noch jemand antwortet.

Was tust du da? Du bekommst ein $r [mm] \in \IR$ [/mm] gegeben und sollst dazu rationale Zahlen konstruieren.

Was du tust ist dir eine rationale Zahl zu nehmen und dazu ein $r [mm] \in \IR$ [/mm] zu waehlen. Was tust du da?

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]