www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Supremum
Supremum < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Supremum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:26 Mi 31.10.2007
Autor: glebi

Aufgabe
Seien A,B beschränkte, nicht-leere Teil-
mengen von [mm] \IR. [/mm] Sei A + B: = {a + b; a [mm] \in [/mm] A; b [mm] \in [/mm] B} : Zeigen Sie, daß
sup(A + B) = supA + supB: (6 Punkte)
Bestimmen Sie inf und sup von

M: ={ 1/n+1/m; n,m [mm] \in \IN [/mm] }



(2 Punkte)

also bei der ersten, das scheint mir offensichtlich, weiß ncih was ich da machen soll... bei der 2. habe ich mir gedacht

supM =2, da ja 1/1+1/1=2 ist und
infM=0, da ja 1/ [mm] \infty [/mm] + 1/ [mm] \infty [/mm] gegen null geht

stimmt das? kannmir jmd eine hilfe zum ansatz für den ersten aufgabenteil geben?

        
Bezug
Supremum: Antwort
Status: (Antwort) fertig Status 
Datum: 01:52 Mi 31.10.2007
Autor: Gonozal_IX

Hallo Gottlieb,

zum ersten Teil der Aufgabe:

sup(A+B) ist ja die kleinste obere Schranke von der Menge A+B. Du musst nun also zeigen, dass sup(A) + sup(B) genau dies erfüllt:

1.) Zeige, dass sup(A) + sup(B) obere Schranke ist
2.) Zeige, dass es keine obere Schranke gibt, die kleiner als sup(A) + sup(B) ist.


Analog musst du das beim zweiten Aufgabenteil machen. Deine Vermutungen stimmen, allerdings musst du es noch nach dem gleichen Schema zeigen wie bei der ersten. Also erst zeigen, dass es jeweils eine Schranke ist, und dann zeigen, dass es die kleinste bzw. grösste Schranke ist.

MfG,
Gono.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]