www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Sup und Inf
Sup und Inf < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Sup und Inf: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 22:28 Mi 13.10.2010
Autor: mongoo

Guten Abend

Ich muss folgende Aufgabe lösen:
Seien A, B [mm] \subset \IR [/mm] beschränkt und nicht leer.
Man definiere die Megne
-A := [mm] {a\in\IR|-a\inA}. [/mm]
Zeige sup(-A)=-inf(A)

Ich möchte dies anhand folgender Definition lösen:
Def. von Supremum und Infimum
s=sup(A) [mm] \gdw [\forall [/mm] a [mm] \in [/mm] A a [mm] \le [/mm] s [mm] \wedge [/mm] falls t [mm] \ge [/mm] a [mm] \forall [/mm] a [mm] \in [/mm] A, so ist t [mm] \ge [/mm] s]
i=inf(A) [mm] \gdw [\forall [/mm] a [mm] \in [/mm] A i [mm] \le [/mm] a [mm] \wedge [/mm] falls h [mm] \le [/mm] a [mm] \forall [/mm] a [mm] \in [/mm] A, so ist h [mm] \le [/mm] i]

Kann ich nun:
sup(-A) [mm] \gdw [\forall [/mm] a [mm] \in [/mm] -A -a [mm] \le [/mm] s [mm] \wedge [/mm] falls t [mm] \ge [/mm] -a [mm] \forall [/mm] a [mm] \in [/mm] -A, so ist t [mm] \ge [/mm] s]
[mm] \gdw [\forall [/mm] a [mm] \in [/mm] -A s [mm] \le [/mm] a [mm] \wedge [/mm] falls a [mm] \ge [/mm] t [mm] \forall [/mm] a [mm] \in [/mm] -A, so ist t [mm] \ge [/mm] s]
-inf(A) [mm] \gdw [\forall [/mm] a [mm] \in [/mm] A -i [mm] \le [/mm] a [mm] \wedge [/mm] falls h [mm] \le [/mm] a [mm] \forall [/mm] a [mm] \in [/mm] A, so ist h [mm] \le [/mm] -i]
[mm] \gdw [\forall [/mm] a [mm] \in [/mm] A a [mm] \le [/mm] i [mm] \wedge [/mm] falls h [mm] \le [/mm] a [mm] \forall [/mm] a [mm] \in [/mm] A, so ist i [mm] \le [/mm] h]
Ist das so?????

Liebe Grüsse mongoo

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Sup und Inf: Antwort
Status: (Antwort) fertig Status 
Datum: 06:46 Do 14.10.2010
Autor: angela.h.b.


> Guten Abend
>  
> Ich muss folgende Aufgabe lösen:
>  Seien A, B [mm]\subset \IR[/mm] beschränkt und nicht leer.
>  Man definiere die Megne
>  -A := [mm]{a\in\IR|-a\inA}.[/mm]
>  Zeige sup(-A)=-inf(A)
>  
> Ich möchte dies anhand folgender Definition lösen:
>  Def. von Supremum und Infimum
>  s=sup(A) [mm]\gdw [\forall[/mm] a [mm]\in[/mm] A a [mm]\le[/mm] s [mm]\wedge[/mm] falls t [mm]\ge[/mm]
> a [mm]\forall[/mm] a [mm]\in[/mm] A, so ist t [mm]\ge[/mm] s]
>  i=inf(A) [mm]\gdw [\forall[/mm] a [mm]\in[/mm] A i [mm]\le[/mm] a [mm]\wedge[/mm] falls h [mm]\le[/mm]
> a [mm]\forall[/mm] a [mm]\in[/mm] A, so ist h [mm]\le[/mm] i]
>  

Hallo,


> Kann ich nun:
>  sup(-A) [mm]\gdw [\forall[/mm] a [mm]\in[/mm] -A -a [mm]\le[/mm] s [mm]\wedge[/mm] falls t [mm]\ge[/mm]  -a [mm]\forall[/mm] a [mm]\in[/mm] -A, so ist t [mm]\ge[/mm] s]

sup(-A) ist äquivalent zu nichts, denn es ist ja gar keine Aussage.
Meintest Du "s=sup(-A)?"
Falls ja:
wenn s das Supremum von -A ist, dann gilt für alle [mm] b\in [/mm] -A: [mm] b\le [/mm] s. (obere Schranke).
Keinesfalls gilt, wie Du schreibst, für alle [mm] a\in [/mm] A: [mm] -a\le [/mm] s.

Mach Dir das doch mal an einem kleinen Beispiel klar:

nehmen wir die Menge [mm] A:=\{-2,-1,0, 4, 5} [/mm]
Es ist infA=-2 und supA=5.

Es ist [mm] -A=\{-5, -4, 0, 1, 2}, [/mm]
inf(-A)=-5 und sup(-A)=2.


Jetzt mal zum Beweis.
Sei A also so eine Menge mit s:=supA und i:=infA.

Zeigen willst Du, daß inf(-A)=-s.
Zeige dazu, daß -s eine untere Schranke von -A ist, und daß es die kleinste untere Schranke ist.

Gruß v. Angela



> [mm]\gdw [\forall[/mm] a [mm]\in[/mm] -A s [mm]\le[/mm] a [mm]\wedge[/mm] falls a [mm]\ge[/mm] t [mm]\forall[/mm]
> a [mm]\in[/mm] -A, so ist t [mm]\ge[/mm] s]
>  -inf(A) [mm]\gdw [\forall[/mm] a [mm]\in[/mm] A -i [mm]\le[/mm] a [mm]\wedge[/mm] falls h [mm]\le[/mm]
> a [mm]\forall[/mm] a [mm]\in[/mm] A, so ist h [mm]\le[/mm] -i]
> [mm]\gdw [\forall[/mm] a [mm]\in[/mm] A a [mm]\le[/mm] i [mm]\wedge[/mm] falls h [mm]\le[/mm] a [mm]\forall[/mm]
> a [mm]\in[/mm] A, so ist i [mm]\le[/mm] h]
>  Ist das so?????
>  
> Liebe Grüsse mongoo
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]