www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Summierbarkeit von Familien
Summierbarkeit von Familien < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Summierbarkeit von Familien: "Idee", "Rückfrage", "Hilfe"
Status: (Frage) beantwortet Status 
Datum: 12:34 Di 08.12.2015
Autor: Ardbeg

Aufgabe
Zeigen Sie, dass die folgende Familien summierbar sind, und berechnen Sie deren Summe.

a) [mm] a_{i,j} [/mm] = [mm] \bruch{1}{3^{i}4^{j}} [/mm] für i,j [mm] \in \IN_{0} [/mm]

b) [mm] a_{i,j} [/mm] = [mm] \bruch{1}{i!2^j} [/mm] für i,j [mm] \in \IN_{0} [/mm]

c) [mm] a_{i,j} [/mm] = [mm] \vektor{j \\ i}x^{i}y^{j-i} [/mm] für i,j [mm] \in \IN_{0} [/mm] und 0 [mm] \le [/mm] i [mm] \le [/mm] j (mit x,y [mm] \in \IR, [/mm] |x|,|y| < [mm] \bruch{1}{2} [/mm] fest)

So, ich wollte eigentlich nur um Hilfestellung und Verbesserung bitten. Zum einen soll ich zeigen, dass sie summierbar sind. Um das zu zeigen muss ein [mm] \varepsilon [/mm] > 0 exisiteren für das es immer eine Teilmenge gibt. Also:

[mm] J_{0} \subset [/mm] J [mm] \Rightarrow |a_{i,j}-s| [/mm] < [mm] \varepsilon [/mm]

a) [mm] \IN_{0} \subset \IN \Rightarrow |\bruch{1}{3^{i}4^{j}}-s| [/mm] < [mm] \varepsilon [/mm]

[mm] a_{i,j} [/mm] = [mm] \summe_{i,j=0}^{\infty} \bruch{1}{3^{i}4^{j}} [/mm] = [mm] \summe_{i=0}^{\infty} \bruch{1}{3^{i}}*\summe_{j=0}^{\infty} \bruch{1}{4^{j}} [/mm] = [mm] \summe_{i=0}^{\infty} \bruch{1}{3^{i}}*\bruch{1}{1-\bruch{1}{4}} [/mm] = [mm] \bruch{1}{1-\bruch{1}{3}}*\bruch{4}{3} [/mm] = [mm] \bruch{3}{2}*\bruch{4}{3} [/mm] = 2

b)  [mm] \IN_{0} \subset \IN \Rightarrow |\bruch{1}{i!2^{j}}-s| [/mm] < [mm] \varepsilon [/mm]

[mm] a_{i,j} [/mm] = [mm] \summe_{i,j=0}^{\infty} \bruch{1}{i!2^{j}} [/mm] = [mm] \summe_{i=0}^{\infty} \bruch{1}{i!}*\summe_{j=0}^{\infty} \bruch{1}{2^{j}} [/mm] = [mm] \summe_{i=0}^{\infty} \bruch{1}{i!}*\bruch{1}{1-\bruch{1}{2}} [/mm] = 2*e

c) [mm] \IN_{0} \subset \IN \Rightarrow |\vektor{j \\ i}x^{i}y^{j-i}-s| [/mm] = [mm] |(x+y)^{n}-s| [/mm] < [mm] \varepsilon [/mm]

[mm] a_{i,j} [/mm] = [mm] \summe_{i,j=0}^{\infty}\vektor{j \\ i}x^{i}y^{j-i} [/mm] = [mm] \summe_{n=0}^{\infty}(x+y)^{n} [/mm] = [mm] \bruch{1}{1-\bruch{1}{x+y}} [/mm] = [mm] \bruch{x+y}{1-x+y} [/mm]

Bei der c) komme ich aber nicht weiter. Sollte ich es doch anders trennen, also die Summen der Produkte?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Summierbarkeit von Familien: Antwort
Status: (Antwort) fertig Status 
Datum: 12:58 Di 08.12.2015
Autor: fred97


> Zeigen Sie, dass die folgende Familien summierbar sind, und
> berechnen Sie deren Summe.
>  
> a) [mm]a_{i,j}[/mm] = [mm]\bruch{1}{3^{i}4^{j}}[/mm] für i,j [mm]\in \IN_{0}[/mm]
>  
> b) [mm]a_{i,j}[/mm] = [mm]\bruch{1}{i!2^j}[/mm] für i,j [mm]\in \IN_{0}[/mm]
>  
> c) [mm]a_{i,j}[/mm] = [mm]\vektor{j \\ i}x^{i}y^{j-i}[/mm] für i,j [mm]\in \IN_{0}[/mm]
> und 0 [mm]\le[/mm] i [mm]\le[/mm] j (mit x,y [mm]\in \IR,[/mm] |x|,|y| < [mm]\bruch{1}{2}[/mm]
> fest)
>  So, ich wollte eigentlich nur um Hilfestellung und
> Verbesserung bitten. Zum einen soll ich zeigen, dass sie
> summierbar sind.


>  Um das zu zeigen muss ein [mm]\varepsilon[/mm] > 0

> exisiteren für das es immer eine Teilmenge gibt.

Aua ! Aua ! Du hast von der Def. nichts verstanden.

Sei I eine Indexmenge, [mm] (x_i)_{i \in I} [/mm] eine Familie von reellen Zahlen und x [mm] \in \IR. [/mm]

Wir bezeichnen die endlichen Teilmengen von I mit [mm] \mathcal{E}. [/mm] Dann heißt  [mm] (x_i)_{i \in I} [/mm] summierbar zum Wert x, wenn es zu jedem [mm] \varepsilon [/mm] >0 ein [mm] E_0 \in \mathcal{E} [/mm] gibt mit

   [mm] $|\summe_{i \in E}x_i-x|<\varepsilon$ [/mm]  für alle  $E [mm] \in \mathcal{E}$ [/mm] mit [mm] $E_0 \subseteq [/mm] E$.



> Also:
>
> [mm]J_{0} \subset[/mm] J [mm]\Rightarrow |a_{i,j}-s|[/mm] < [mm]\varepsilon[/mm]
>  
> a) [mm]\IN_{0} \subset \IN \Rightarrow |\bruch{1}{3^{i}4^{j}}-s|[/mm]
> < [mm]\varepsilon[/mm]

Unfug ! Hier ist [mm] $I=\IN_0 \times \IN_0$ [/mm]


>  
> [mm]a_{i,j}[/mm] =

Dieses "=" ist völlig falsch !

[mm]\summe_{i,j=0}^{\infty} \bruch{1}{3^{i}4^{j}}[/mm] =

> [mm]\summe_{i=0}^{\infty} \bruch{1}{3^{i}}*\summe_{j=0}^{\infty} \bruch{1}{4^{j}}[/mm]
> = [mm]\summe_{i=0}^{\infty} \bruch{1}{3^{i}}*\bruch{1}{1-\bruch{1}{4}}[/mm]
> = [mm]\bruch{1}{1-\bruch{1}{3}}*\bruch{4}{3}[/mm] =
> [mm]\bruch{3}{2}*\bruch{4}{3}[/mm] = 2


Wende nun die obige Def. auf x=2 an.



>  
> b)  [mm]\IN_{0} \subset \IN \Rightarrow |\bruch{1}{i!2^{j}}-s|[/mm]
> < [mm]\varepsilon[/mm]
>  
> [mm]a_{i,j}[/mm] = [mm]\summe_{i,j=0}^{\infty} \bruch{1}{i!2^{j}}[/mm] =
> [mm]\summe_{i=0}^{\infty} \bruch{1}{i!}*\summe_{j=0}^{\infty} \bruch{1}{2^{j}}[/mm]
> = [mm]\summe_{i=0}^{\infty} \bruch{1}{i!}*\bruch{1}{1-\bruch{1}{2}}[/mm]
> = 2*e
>  
> c) [mm]\IN_{0} \subset \IN \Rightarrow |\vektor{j \\ i}x^{i}y^{j-i}-s|[/mm]
> = [mm]|(x+y)^{n}-s|[/mm] < [mm]\varepsilon[/mm]
>  
> [mm]a_{i,j}[/mm] = [mm]\summe_{i,j=0}^{\infty}\vektor{j \\ i}x^{i}y^{j-i}[/mm]
> = [mm]\summe_{n=0}^{\infty}(x+y)^{n}[/mm] =
> [mm]\bruch{1}{1-\bruch{1}{x+y}}[/mm] = [mm]\bruch{x+y}{1-x+y}[/mm]
>


Gleiche Kritik wie oben.

FRED

> Bei der c) komme ich aber nicht weiter. Sollte ich es doch
> anders trennen, also die Summen der Produkte?
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]