www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Summenwert zeigen
Summenwert zeigen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Summenwert zeigen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 12:52 Fr 24.10.2008
Autor: yildi

Aufgabe
Zeigen Sie dass gilt:

[mm] \summe_{k=0}^{\infty} \bruch{(-1)^{k}}{2^{k}} = \bruch{2}{3} [/mm]

Hallo!

Kann mir jemand bei dieser Aufgabe helfen? Das ist bereits die zweite, die ich in dieser Art lösen soll. Die erste habe ich hinbekommen, weil ich sie auf die Form [mm]x^{k}[/mm] innerhalb des Summenzeichens bringen konnte und die Formel für geometrische Reihen anwenden konnte.
Dieses Ausdruck konnte ich bislang nur umformen zu:

[mm] \summe_{k=0}^{\infty} (-1)^{k} * (2k)^{-1} [/mm]

Hat jemand eine Idee, wie ich weiterkomme? :)
Vielen Dank!

        
Bezug
Summenwert zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:01 Fr 24.10.2008
Autor: Teufel

Hi!

Hier kannst du doch auch umwandeln!

[mm] \bruch{(-1)^k}{2^k}=(-\bruch{1}{2})^k [/mm]

Die dazugehörigen Folgenglieder wären ja dann [mm] a_n=(\red{1};-\bruch{1}{2}; \bruch{1}{4}; -\bruch{1}{8}; [/mm] ...; [mm] 1*(-\bruch{1}{2})^{n-1}). [/mm]

Der Summenwert sollte allerdings [mm] -\bruch{1}{3} [/mm] sein!
[anon] Teufel

Bezug
                
Bezug
Summenwert zeigen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:14 Fr 24.10.2008
Autor: schachuzipus

Hallo Teufel,

> Der Summenwert sollte allerdings [mm]-\bruch{1}{3}[/mm] sein! [notok]

Edit: Du hast den Summanden für $n=0$, also [mm] $\left(-\frac{1}{2}\right)^0=1$ [/mm] unterschlagen in deiner Darstellung

Das ist doch ne lupenreine geometrische Reihe [mm] $\sum\limits_{k=0}^{\infty}\left(-\frac{1}{2}\right)^k=\frac{1}{1-\left(-\frac{1}{2}\right)}=\frac{1}{1+\frac{1}{2}}=\frac{1}{\frac{3}{2}}=\frac{2}{3}$ [/mm]


>  [anon] Teufel


LG

schachuzipus

Bezug
                        
Bezug
Summenwert zeigen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:24 Fr 24.10.2008
Autor: Teufel

Hi!

Ach klar, habe das k=0 für ein k=1 gehalten ;) na dann muss man natürlich noch 1 addieren und kommt auf die [mm] \bruch{2}{3}. [/mm]
Hast natürlich Recht!

[anon] Teufel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]