Summenformel gesucht < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 23:02 Do 06.11.2008 | Autor: | miramax |
Aufgabe | S(1)= 1*2
S(2)=1*2+2*3
S(3)=1*2+2*3+3*4
S(4)=1*2+2*3+3*4+4*5 |
Hey Experten :)
Sitze gerade an meinen Wochenaufgaben und überlege wie ich für diese o.g. Aufgabenstellung eine Summenformel finden kann. Habe so Einiges ausprobiert aber es will nicht so richtig klappen. Bitte um eure Tipps,Ideen und Vorschläge.
Danke !!!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 23:08 Do 06.11.2008 | Autor: | Loddar |
Hallo miramax,
!!
Hast Du Dir mal die ersten 7 / 8 Reihenglieder aufgeschrieben? Bilde dann mal die Differenz dieser einzelnen Glieder. Und von diesen Differenzen wiederum die Differenzen. Und dann nochmal: dann solltest Du feststellen, dass bei der 3. Differenzebildung ein konstanter Wert entsteht.
Es handelt sich also um eine arithmetische Folge 3. Ordnung. Diese wird beschrieben durch einen ganzrationalen Term 3. Ordnung:
[mm] $$a_n [/mm] \ = \ [mm] A*n^3+B*n^2+C*n+D$$
[/mm]
Gruß
Loddar
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 23:26 Do 06.11.2008 | Autor: | miramax |
Vielen Dank!
Hast mir super geholfen.
Ich bin gerade etwas am verzweifeln. Als ich das Mathestudium begonnen habe, dachte ich ich wäre super in dem Fach. Ich bin leider eines Besseren lehrt worden.
Also jetzt wo ich weiß wie du vorgegangen bist ist alles klar aber ich bin nicht darauf gekomen.
Ich hatte so angefangen:
n*(n+1)+(n+1)*(n+2)+(n+2)*(n+3)+....... =
[mm] (n^2+n) [/mm] + [mm] (n^2 +3n+2)+(n^2+5n+6) [/mm] und dann bin ich nicht wirklich viel weiter gekommen. Habe ich falsch gedacht oder falsch angefangen?
Grüße
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 02:01 Fr 07.11.2008 | Autor: | Marcel |
Hallo,
> Vielen Dank!
>
> Hast mir super geholfen.
>
> Ich bin gerade etwas am verzweifeln. Als ich das
> Mathestudium begonnen habe, dachte ich ich wäre super in
> dem Fach. Ich bin leider eines Besseren lehrt worden.
>
> Also jetzt wo ich weiß wie du vorgegangen bist ist alles
> klar aber ich bin nicht darauf gekomen.
>
> Ich hatte so angefangen:
>
> n*(n+1)+(n+1)*(n+2)+(n+2)*(n+3)+....... =
>
> [mm](n^2+n)[/mm] + [mm](n^2 +3n+2)+(n^2+5n+6)[/mm] und dann bin ich nicht
> wirklich viel weiter gekommen. Habe ich falsch gedacht oder
> falsch angefangen?
ich hab's mir gerade nicht so genau angeguckt, aber mach' doch folgendes:
Mit Loddars Ansatz setzt Du [mm] $s(n)=A\cdot{}n^3+B\cdot{}n^2+C\cdot{}n+D\,.$ [/mm] Nun berechnest Du für Dich hier $A,B,C,D$ (durch Betrachten hinreichend vieler $s(n)$:
$$s(1)=2 [mm] \Rightarrow A+B+C+D=2\,$$
[/mm]
$$s(2)=1*2+2*3=8 [mm] \Rightarrow [/mm] 8A+4B+2C+D=8$$
.
.
.
(Tipp: Wieviele Gleichungen brauchst Du bei $4$ Variablen mindestens?))
Damit scheinst Du ja nun eine Formel für $s(n)$ gefunden zu haben. (Es ist, bei diesem Ansatz aber noch unklar, ob diese auch allgemeingültig ist? Vielleicht stimmt sie ja nur für $n=1$ bis $n=10000$? Aber das Problem werden wir noch lösen...)
Fies, wie Mathematiker manchmal sein können, schreibst Du das alles nur auf einen Schmierzettel.
Bei der Lösung der Aufgabe schreibst Du nun die Formel (die dann nun anscheinend vom Himmel gefallen ist; oder war es gar göttliche Eingebung? (Loddar=Gott? )) für $s(n)$ auf. Damit ist die Aufgabe natürlich nicht gelöst, aber dass diese Formel auch wirklich für jedes $n [mm] \in \IN$ [/mm] gilt: Führe einen Induktionsbeweis.
Gruß,
Marcel
|
|
|
|