www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Summen einer Folge ->unendlich
Summen einer Folge ->unendlich < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Summen einer Folge ->unendlich: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:06 Do 14.07.2011
Autor: TeamBob

Aufgabe
Berechnen Sie !
[mm] \summe_{k=0}^{\infty} \bruch{(-2)^k}{3^{k-1}} [/mm]

Hallo
Also leider habe ich gar keinen wirklichen Ansatz wie ich dort vorgehen sollte.
Da es sich hier ja um eine alternierende Reihe halndelt, da die Vorzeichen ja laufend wechseln. Ich weis nicht wirklich wie ich dort nun den Endwert bestimmen sollte.
Es kommt raus 5, aber warum ?

Danke schonmal im Vorraus

        
Bezug
Summen einer Folge ->unendlich: Antwort
Status: (Antwort) fertig Status 
Datum: 14:14 Do 14.07.2011
Autor: fred97


> Berechnen Sie !
>  [mm]\summe_{k=0}^{\infty} \bruch{(-2)^k}{3^{k-1}}[/mm]
>  Hallo
>  Also leider habe ich gar keinen wirklichen Ansatz wie ich
> dort vorgehen sollte.
>  Da es sich hier ja um eine alternierende Reihe halndelt,
> da die Vorzeichen ja laufend wechseln. Ich weis nicht
> wirklich wie ich dort nun den Endwert bestimmen sollte.
>  Es kommt raus 5,


Das stimmt nicht.

> aber warum ?


Tipp 1:

    $ [mm] \summe_{k=0}^{\infty} \bruch{(-2)^k}{3^{k-1}} =3*\summe_{k=0}^{\infty} [/mm] ( [mm] \bruch{-2}{3})^k [/mm] $

Tipp 2: geometrische Reihe.

FRED

>  
> Danke schonmal im Vorraus


Bezug
                
Bezug
Summen einer Folge ->unendlich: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:27 Do 14.07.2011
Autor: TeamBob

Hallo
Also hier ist der Lösungsweg unseres Profs.
Ich verstehe es auch nicht ganz. Hoffe sehr ihr könnt mir helfen.
Es müsste doch eigentlich gegen unendlich sein oder?

[mm] \summe_{k=0}^{\infty}\bruch{(-2)^k}{3^{K-1}}= [/mm]

[mm] \summe_{k=0}^{\infty}3\bruch{(-2)^k}{3^k}= [/mm]

[mm] \summe_{k=0}^{\infty}3(\bruch{-2}{3})^k= [/mm]

[mm] \summe_{k=0}^{\infty}3\bruch{3}{1-(-\bruch{2}{3})}= [/mm] 5

Versteh aber den Lösungsweg gar nicht wo  im 4 Schritt auf einmal das k hin ist und wie er umgeformt hat.


Bezug
                        
Bezug
Summen einer Folge ->unendlich: Antwort
Status: (Antwort) fertig Status 
Datum: 14:35 Do 14.07.2011
Autor: schachuzipus

Hallo TeamBob,


> Hallo
>  Also hier ist der Lösungsweg unseres Profs.
>  Ich verstehe es auch nicht ganz. Hoffe sehr ihr könnt mir
> helfen.
>  Es müsste doch eigentlich gegen unendlich sein oder?

Nein!

>  
> [mm]\summe_{k=0}^{\infty}\bruch{(-2)^k}{3^{K-1}}=[/mm]
>  
> [mm]\summe_{k=0}^{\infty}3\bruch{(-2)^k}{3^k}=[/mm]
>  
> [mm]\summe_{k=0}^{\infty}3(\bruch{-2}{3})^k=[/mm]  [ok]
>
> [mm]\summe_{k=0}^{\infty}3\bruch{3}{1-(-\bruch{2}{3})}=[/mm] 5 [notok]

Das hat er nie und nimmer so hingeschrieben!? Was soll vor allem das Summenzeichen noch da?

Es ist [mm]\sum\limits_{k=0}^{\infty}q^k=\frac{1}{1-q}[/mm] für [mm]|q|<1[/mm]

Also hier mit [mm]q=-\frac{2}{3}[/mm]:

[mm]\sum\limits_{k=0}^{\infty}\red{3\cdot{}}\left(-\frac{2}{3}\right)^k=\red{3\cdot{}}\sum\limits_{k=0}^{\infty}\left(-\frac{2}{3}\right)^k=\red{3\cdot{}}\frac{1}{1-\left(-\frac{2}{3}\right)}=...[/mm]

Bedenke [mm]\left|-\frac{2}{3}\right|=\frac{2}{3}<1[/mm]


>  
> Versteh aber den Lösungsweg gar nicht wo  im 4 Schritt auf
> einmal das k hin ist und wie er umgeformt hat.

Das kann man auch nicht verstehen, weil das großer Humbuk ist.

Hast du in der Eile vllt. falsch abgeschrieben von der Tafel?

Gruß

schachuzipus



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]