www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Summe von Reihen
Summe von Reihen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Summe von Reihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:50 Mi 21.07.2010
Autor: m0ppel

Wie muss ich den Konkreten Grenzwert einer Reihe (bzw. dessen Summe) berechnen?

Ich weiß, wie ich die Summe einer unendlichen geometrischen Reihe zu bestimmen habe:
[mm] \summe_{i=0}^{\infty} k^n [/mm] = [mm] \bruch{1-k^{n+1}}{1-k} [/mm]

Aber wie muss ich das nun machen, wenn ich diese Reihe gegeben habe:
[mm] \summe_{n=1}^{\infty} \bruch{1}{4n^2-1} [/mm]
und dessen Summe bestimmen soll?



        
Bezug
Summe von Reihen: Teleskopsumme
Status: (Antwort) fertig Status 
Datum: 14:04 Mi 21.07.2010
Autor: Roadrunner

Hallo m0ppel!


Führe zunächst eine MBPartialbruchzerlegung durch:
[mm] $$\bruch{1}{4n^2-1} [/mm] \ = \ [mm] \bruch{1}{(2n+1)*(2n-1)} [/mm] \ = \ [mm] \bruch{A}{2n+1}+\bruch{B}{2n-1}$$ [/mm]

Anschließend bzw. damit erhältst Du eine sogenannte "Teleskopsumme", bei der sich fast alle Summanden eliminieren.


Gruß vom
Roadrunner


PS: Diese Reihe hat nichts mit der Formel der geometrischen Reihe zu tun.


Bezug
                
Bezug
Summe von Reihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:29 Mi 21.07.2010
Autor: m0ppel

Das hab ich nun gemacht: dann kommt heraus
[mm]\bruch{1}{4n^2-1} = \bruch{-1}{4n+2} + \bruch{1}{4n-2}[/mm]
stetze ich nun ein:
[mm] \summe_{n=1}^{\infty} (\bruch{1}{4n-2} + \bruch{-1}{4n+2}) = \bruch{1}{2} - \bruch{1}{6} + \bruch{1}{6} - \bruch{1}{10} + \bruch{1}{10} -\bruch{1}{14} ...[/mm] = [mm] \bruch{1}{2} [/mm]
Jedoch weiß ich hier nicht,  ob da noch was fehlt, da sich ja vom letzten ausgeführtem Schritt der 2. Bruch nicht wegkürzt oder kann man das vernachlässigen, da n gegen unendlich geht und somit der letzte Bruch unberücksichtigt werden kann?
lg

Bezug
                        
Bezug
Summe von Reihen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:35 Mi 21.07.2010
Autor: fred97


> Das hab ich nun gemacht: dann kommt heraus
> [mm]\bruch{1}{4n^2-1} = \bruch{-1}{4n+2} + \bruch{1}{4n-2}[/mm]
>  
> stetze ich nun ein:
>  [mm]\summe_{n=1}^{\infty} (\bruch{1}{4n-2} + \bruch{-1}{4n+2}) = \bruch{1}{2} - \bruch{1}{6} + \bruch{1}{6} - \bruch{1}{10} + \bruch{1}{10} -\bruch{1}{14} ...[/mm]
> = [mm]\bruch{1}{2}[/mm]
>  Jedoch weiß ich hier nicht,  ob da noch was fehlt, da
> sich ja vom letzten ausgeführtem Schritt der 2. Bruch
> nicht wegkürzt oder kann man das vernachlässigen, da n
> gegen unendlich geht und somit der letzte Bruch
> unberücksichtigt werden kann?


Du mußt

                [mm] $\summe_{k=1}^{n} (\bruch{1}{4k-2} [/mm] - [mm] \bruch{1}{4k+2}) [/mm] $

berechnen und dann schauen, was bei n [mm] \to \infty [/mm] passiert

FRED


>  lg


Bezug
                                
Bezug
Summe von Reihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:47 Mi 21.07.2010
Autor: m0ppel


> Du mußt
>
> [mm]\summe_{k=1}^{n} (\bruch{1}{4k-2} - \bruch{1}{4k+2})[/mm]
>  
> berechnen

das hab ich doch getan, oder?

> und dann schauen, was bei n [mm]\to \infty[/mm] passiert

hier würde ich dann ergänzen:

[mm]\summe_{n=1}^{\infty} (\bruch{1}{4n-2} + \bruch{-1}{4n+2}) = \bruch{1}{2} - \bruch{1}{6} + \bruch{1}{6} - \bruch{1}{10} + \bruch{1}{10} -\bruch{1}{14} ...[/mm]
= [mm]\bruch{1}{2} - \limes_{n\rightarrow\infty} \bruch{1}{4n+1}[/mm]
und da [mm] \limes_{n\rightarrow\infty} \bruch{1}{4n+1} [/mm] =0
folgt: [mm]\summe_{n=1}^{\infty} (\bruch{1}{4n-2} + \bruch{-1}{4n+2}) = \bruch{1}{2} [/mm]

oder was verstehe ich hier falsch?
Lg

Bezug
                                        
Bezug
Summe von Reihen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:50 Mi 21.07.2010
Autor: fred97


> > Du mußt
> >
> > [mm]\summe_{k=1}^{n} (\bruch{1}{4k-2} - \bruch{1}{4k+2})[/mm]
>  >  
> > berechnen
> das hab ich doch getan, oder?



Nein. Du sollst die endliche Summe [mm]\summe_{k=1}^{n} (\bruch{1}{4k-2} - \bruch{1}{4k+2})[/mm] berechnen

FRED

>
> > und dann schauen, was bei n [mm]\to \infty[/mm] passiert
>  
> hier würde ich dann ergänzen:
>
> [mm]\summe_{n=1}^{\infty} (\bruch{1}{4n-2} + \bruch{-1}{4n+2}) = \bruch{1}{2} - \bruch{1}{6} + \bruch{1}{6} - \bruch{1}{10} + \bruch{1}{10} -\bruch{1}{14} ...[/mm]
> = [mm]\bruch{1}{2} - \limes_{n\rightarrow\infty} \bruch{1}{4n+1}[/mm]
>  
> und da [mm]\limes_{n\rightarrow\infty} \bruch{1}{4n+1}[/mm] =0
> folgt: [mm]\summe_{n=1}^{\infty} (\bruch{1}{4n-2} + \bruch{-1}{4n+2}) = \bruch{1}{2}[/mm]
>  
> oder was verstehe ich hier falsch?
>  Lg


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]