www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Summe von Reihen
Summe von Reihen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Summe von Reihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:00 Mo 16.05.2005
Autor: ThomasK

Hey Leute

hab noch mal eine Frage zu der Berechnung einer Summe:

Also wir sollen die Summe von 1/(n(n+1)(n+2)) berechnen.

Zuerst hab ich mit Partialbruchzerlegung ermittelt

1/(n(n+1)(n+2)) = 1/(2n) - 1/(n+1) + 1/(2(n+2))

was ich nicht verstehe ist das sich für die N-te Partialsumme sich ergibt:
[mm] s_{N}=1/4 [/mm] - 1/2*1/(N+1) + 1/2*1/(N+2)

Daraus folgt für N [mm] \to \infty [/mm]

1/(n(n+1)(n+2)) = 1/4

Wie kommt man auf das [mm] s_{N}?? [/mm]

        
Bezug
Summe von Reihen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:32 Mo 16.05.2005
Autor: banachella

Hallo!

Bitte mach dich doch ein bisschen mit dem Formeleditor bekannt, es wäre dann viel leichter, deine Fragen zu lesen - und auch zu beantworten!
Das Geheimnis liegt darin, die Summe in eine Teleskopsumme umzuschreiben:
[mm] $s_N=\summe_{n=1}^N\bruch{1}{n(n+1)(n+2)} [/mm] = [mm] \summe_{n=1}^N \left( \bruch{1}{2n} -\bruch{1}{n+1}+\bruch{1}{2(n+2)}\right)=\summe_{n=1}^N\left(\bruch{1}{2n}-\bruch{1}{2(n+1)}\right)-\left(\bruch{1}{2(n+1)}-\bruch{1}{2(n+2)}\right)$. [/mm]
Die Summe kann man also auch in der Form [mm] $\summe_{n=1}^{N}a_n-a_{n+1}$ [/mm] schreiben. Dann ergibt sich:
[mm] $s_N=\summe_{n=1}^{N} (a_n-a_{n+1})=\summe_{n=1}^N a_n-\summe_{n=2}^{N+1}a_n=a_1-a_{N+1}$... [/mm]

Gruß, banachella


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]